Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the problem which concerning the technology of bimetallic castings in materials configuration: high-chromium steel as the working layer and grey cast iron as the base part. The aim of the studies was integrate the process of manufacturing of bimetallic casting with the heat treatment of hardening type of X46Cr13 steel insert by applying the mould with sandmix on a matrix of chromite sand. Range of studies included the chemical composition analysis, non-destructive ultrasonic tests to examine the quality of the permanent bond between the working layer (steel insert) and the base part (grey cast iron) of the bimetallic castings, hardness measurements as well as metallographic examinations performed on the optical and scanning electron microscopes. On the basis of obtained results was concluded that the self-hardening process occurred in the X46Cr13 steel working layer and in result of this the hardness on its surface equalled approx. 45HRC in case of the bimetallic castings with full permanent bond between both parts.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
43--50
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa Str., 44-100 Gliwice, Poland
Bibliografia
- [1] Z. Górny, Reinforced and multilayer castings. Solidification of Metals and Alloys 11, 135-164 (1987), in Polish.
- [2] T. Wróbel, Layered castings made by method of mould cavity preparation with monolithic insert, Archives of Foundry Engineering, Katowice - Gliwice (2016), in Polish.
- [3] J. Szajnar, A. Dulska, T. Wróbel, J. Suchoń, Diffusion of C and Cr during creation of surface layer on cast steel casting, Arch. Metall. Mater. 59 (3), 1085-1087 (2014). DOI: 10.2478/amm-2014-0186
- [4] A. Dulska, A. Studnicki, J. Szajnar, Reinforcing cast iron with composite insert, Arch. Metall. Mater. 62 (1), 365-367 (2017). DOI: 10.1515/amm-2017-0054
- [5] S. Sobula, E. Olejnik, T. Tokarski, Wear resistance of tic reinforced cast steel matrix composite, Arch. Foundry Eng. 17 (1), 143-146 (2017). DOI: 10.1515/afe-2017-0026
- [6] X. Zhi, Y. Han, J. Liu, M. Zhao, S. Ma, Casting process optimization of a bimetal wear-resistant block using liquid-solid processing, Int. J. Mater. Res. 105 (10), 953-960 (2014). DOI: 10.3139/146.111109
- [7] V. Javaheri, H. Rastegari, M. Naseri, Fabrication of plain carbon steel / high chromium white cast iron bimetal by liquid-solid composite casting process, Int. J. Min. Met. Mater. 22 (9), 950-955 (2015). DOI: 10.1007/s12613-015-1154-3
- [8] M. Ramadan, B. Ayadi, W. Rajhi, A. Alghamdi, Influence of tinning material on interfacial microstructures and mechanical properties of Al12Sn4Si1Cu /carbon steel bimetallic castings for bearing applications, Key. Eng. Mater. 835, 108-114 (2020). DOI: 10.4028/www.scientific.net/KEM.835.108
- [9] C. Cingi, V. Rauta, E. Niani, J. Orkas, Cast bonding of cast irons to ferritic stainless steel, Mater. Sci. Forum. 654-656, 2712-2715 (2010). DOI: 10.4028/www.scientific.net/MSF.654-656.2712
- [10] M. Ramadan, Interface characterization of bimetallic casting with a 304 stainless steel surface layer and a gray cast iron base, Adv. Mat. Res. 1120-1121, 993-997 (2015). DOI: 10.4028/www.scientific.net/KEM.835.108
- [11] N. Przyszlak, T. Wróbel, Self-hardening of X46Cr13 steel integrated with base from grey cast iron in bimetallic system, Arch. Foundry Eng. 19 (2), 29-34 (2019), DOI: 10.24425/afe.2019.127112
- [12] T. Wróbel, N. Przyszlak, A. Dulska, Technology of alloy layers on surface of castings, Int. J. Metalcast. 13 (3), 604-610 (2019). DOI: 10.1007/s40962-018-00304-x
- [13] MagmaSoft v5.4 Database.
- [14] J. Adamczyk, Enginering of metallic materials, Silesian University of Technology, Gliwice (2004), in Polish.
- [15] Characteristic of steels, Krupp Stahl AG, 4.300, 86-87 (1982).
- [16] A. Wassilikowska, A. Czaplicka-Kotas, M. Zielina, A. Bielski, An analysis of the elemental composition of micro-samples using EDS technique, Technical Transactions Chemistry 18 (1), 133-148 (2014).
- [17] C. Garcia de Andres, G. Caruana, L. Alvarez, Control of M23C6 carbides in 0.45C-13Cr martensitic stainless steel by means of three representative heat treatment parameters, Mater. Sci. Eng. 241 (1-2), 211-215 (1998). DOI: 10.1016/S0921-5093(97)00491-7.
- [18] P. Rosemann, N. Kauss, C. Muller, T. Halle, Influence of solution annealing temperature and cooling medium on microstructure, hardness and corrosion resistance of martensitic stainless steel X46Cr13, Mater. Corros. 66 (10), 1068-1076 (2015). DOI:10.1002/maco.201408081
- [19] Y. Yang, H. Zhao, H. Dong, Carbide evolution in high-carbon martensitic stainless cutlery steels during austenitizing, J. Mater. Eng. Perform. 29 (6), 3868-3875 (2020). DOI: 10.1007/s11665-020-04912-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19638193-0a72-4ca9-8266-cfbb040a0c37