PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of surfactants on the flotation performance of low-rank coal by particle sliding process measurements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ surfaktantów na sprawność flotacji węgla niskiej jakości w pomiarach procesu przemieszczania się cząstek
Języki publikacji
EN
Abstrakty
EN
In this paper, flotation performances of low-rank coal were investigated in the 2-ethyl hexanol, DAH (dodecyl amine hydrochloride), and SDS (sodium dodecyl sulfate) solutions, respectively. In order to reduce the heterogeneity and hydrodynamic effects on the hydrophobicity and movement trajectory of low-rank coal particles, respectively, experimental coal samples with low ash content and 0.500–0.250 mm in size fraction were adopted. The XPS result demonstrated that the total silicium and aluminum content of 0.500–0.250 mm size fraction was 1.58%. It was also found that the ash content of the 0.500–0.250 mm size fraction was 1.91%. Therefore, it demonstrated that there were few hydrophilic mineral particles on the coal sample surface. Thus, the heterogeneity effect of hydrophilic mineral particles during sliding process measurements can be ignored. The XPS result also indicated that after the grinding process, the mineral content on the low-rank coal surface was very small, which would play a small role in the hydrophobicity of low-rank coal samples. The flotation results indicated that the hydrophobicity of the low-rank coal particles could be improved by nonionic 2-ethyl hexanol and cation DAH surfactants. Moreover, from the analysis of slip angle velocity, it demonstrated that the flotation responses of low-rank coal were depressed by anionic SDS. Furthermore, it was observed that the slip angle velocity can be used to evaluate the effect of surfactant agents on the flotation performance of low-rank coal while the surfactant concentration was more than 10–6 mol/L.
PL
W niniejszym artykule zbadano właściwości flotacyjne węgla niskiej jakości w roztworach 2-etyloheksanolu, DAH (chlorowodorku dodecylu) i SDS (dodecylosiarczanu sodu). W celu zmniejszenia niejednorodności i skutków hydrodynamicznych hydrofobowości i trajektorii ruchu cząstek węgla niskiej jakości przyjęto do doświadczeń próbki węgla o niskiej zawartości popiołu z klasy ziarnowej 0,500–0,250 mm. Wynik XPS wykazał, że całkowita zawartość krzemu i glinu w klasie ziarnowej 0,500–0,250 mm wynosiła 1,58%. Stwierdzono również, że zawartość popiołu w klasie ziarnowej 0,500–0,250 mm wynosiła 1,91%. W związku z tym wykazano, że na powierzchni próbki węgla znajduje się niewiele hydrofilowych cząstek mineralnych. W ten sposób można pominąć efekt heterogeniczności hydrofilowych cząstek mineralnych podczas pomiarów kąta poślizgu. Wynik XPS wskazał również, że po procesie mielenia zawartość minerałów na powierzchni węgla niskiej jakości była bardzo mała, dlatego też występuje słabe oddziaływanie na hydrofobowość tych próbek. Wyniki flotacji wskazują, że hydrofobowość cząstek węgla niskiej jakości można poprawić za pomocą niejonowego 2-etyloheksanolu i kationowych środków powierzchniowo czynnych DAH. Analiza prędkości kąta poślizgu wykazuje, że flotacja węgla niskiej jakości została obniżona przez SDS. Ponadto zaobserwowano, że prędkość kąta poślizgu może być wykorzystana do oceny wpływu środków powierzchniowo czynnych na sprawność flotacji węgla niskiej jakości, gdy ich stężenie jest większe niż 10–6 mol/L.
Twórcy
autor
  • China University of Mining and Technology , China
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Bibliografia
  • [1] Aktas, Z. and Woodburn, E.T. 1994. The adsorption behaviour of nonionic reagents on two low-rank British coals. Miner Eng 7(9), pp. 1115–1126.
  • [2] Albijanic et al. 2010 – Albijanic, B., Ozdemir, O., Nguyen, A.V. and Bradshaw, D. 2010. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid & Interface Science 159(1), pp. 1–21.
  • [3] Aplan, F.F. 1993. Coal properties dictate coal flotation strategies. Mining Engineering 45 (1), pp. 83–96.
  • [4] Brennan, R.F. 2011. Coal properties dictate coal flotation strategies. Adv Mater 23(4), pp. 442–460.
  • [5] Burkin, A.R. and Bramley, J.V. 2010a. Flotation with insoluble reagents. II. Effects of surface-active reagents on the spreading of oil at coal-water interfaces. Journal of Chemical Technology & Biotechnology 13(10), pp. 417–422.
  • [6] Burkin, A.R. and Bramley, J.V. 2010b. Flotation with insoluble reagents. I. Collision and spreading behaviour in the coal oil water system. Journal of Chemical Technology & Biotechnology 11(8), pp. 300–309.
  • [7] Bustamante, H. and Woods, G. 1984. Interaction of dodecylamine and sodium dodecyl sulphate with a low-rank bituminous coal. Colloids & Surfaces 12(3–4), pp. 381–399.
  • [8] Cebeci, Y. 2002. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors. Fuel 81(3), pp. 281–289.
  • [9] Ceylan, K. and Küçük, M.Z. 2004. Effectiveness of the dense medium and the froth flotation methods in cleaning some Turkish lignites. Energy Conversion & Management 45(9–10), pp. 1407–1418.
  • [10] Chander et al. 1994 – Chander, S., Polat, H. and Mohal, B. 1994. Flotation and wettability of a low-rank coal in the presence of surfactants. Miner Metall Proc 11(1), pp. 55–61.
  • [11] Desimoni et al. 1992 – Desimoni, E., Casella, G.I. and Salvi, A.M. 1992. XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon 30(4), pp. 521–526.
  • [12] Fiedler, R. and Bendler, D. 1992. ESCA investigations on Schleenhain lignite lithotypes and the hydrogenation residues. Fuel 71(4), 381–388.
  • [13] Gu et al. 2003 – Gu, G., Xu, Z., Nandakumar, K. and Masliyah, J. 2003. Effects of physical environment on induction time of air–bitumen attachment. Int J Miner Process 69(1), pp. 235–250.
  • [14] Harris G.H.et al. 1995 – Harris, G.H., Diao, J. and Fuerstenau, D.W. 1995. Coal flotation with nonionic surfactants. Coal Preparation 16(3), pp. 135–147.
  • [15] Jia R.et al. 2000 – Jia R., Harris, G.H. and Fuerstenau, D.W. 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int J Miner Process 58(1), pp. 99–118.
  • [16] Jowett, A. 1980. Formation and disruption of particle-bubble aggregates in flotation. Fine Particles Processing 1, pp. 720–754.
  • [17] Kelebek S.et al. 2008 – Kelebek, S., Demir, U., Sahbaz, O., Ucar, A., Cinar, M., Karaguzel, C. and Oteyaka, B. 2008. The effects of dodecylamine, kerosene and pH on batch flotation of Turkey’s Tuncbilek coal. Int J Miner Process 88(3–4), pp. 65–71.
  • [18] Kosior et al. 2014 – Kosior, D., Zawala, J. and Malysa, K. 2014. Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloids & Surfaces A Physicochemical & Engineering Aspects 441(3), pp. 788–795.
  • [19] Kosior et al. 2015 – Kosior, D., Zawala, J., Niecikowska, A. and Malysa, K. 2015. Influence of non-ionic and ionic surfactants on kinetics of the bubble attachment to hydrophilic and hydrophobic solids. Colloids & Surfaces A Physicochemical & Engineering Aspects 470, pp. 333–341.
  • [20] Krasowska et al. 2007 – Krasowska, M., Krastev, R., Rogalski, M. and Malysa, K. 2007. Air-facilitated three-phase contact formation at hydrophobic solid surfaces under dynamic conditions. Langmuir the Acs Journal of Surfaces & Colloids 23(2), pp. 549–57.
  • [21] Majka-Myrcha, B. and Girczys, J. 1993. The Effect of Redox Conditions on the Floatability of Coal. Coal Preparation 13(1–2), pp. 21–30.
  • [22] Nguyen et al. 1998 – Nguyen, A.V., Ralston, J. and Schulze, H.J. 1998. On modelling of bubble–particle attachment probability in flotation. Int J Miner Process 53(4), pp. 225–249.
  • [23] Pietrzak, R. 2009. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 88(10), pp. 1871–1877.
  • [24] Qu et al. 2014 – Qu, J., Tao, X., He, H., Zhang, X., Xu, N. and Zhang, B. 2014. Synergistic effect of surfactants and a collector on the flotation of a Low-Rank coal. International Journal of Coal Preparation & Utilization 35(1), pp. 14–24.
  • [25] Rao et al. 2015 – Rao, Z., Zhao, Y., Huang, C., Duan, C. and He, J. 2015. Recent developments in drying and dewatering for low-rank coals. Prog Energ Combust 46, pp. 1–11.
  • [26] Schulze et al. 1989 – Schulze, H.J., Radoev, B., Geidel, T., Stechemesser, H. and Töpfer, E. 1989. Investigations of the collision process between particles and gas bubbles in flotation-a theoretical analysis*. Int J Miner Process 27(27), pp. 263–278.
  • [27] Sis et al. 2003 – Sis, H., Ozbayoglu, G. and Sarikaya, M. 2003. Comparison of non-ionic and ionic collectors in the flotation of coal fines. Miner Eng 16(4), pp. 399–401.
  • [28] Su et al. 2006 – Su, L., Xu, Z. and Masliyah, J. 2006. Role of oily bubbles in enhancing bitumen flotation. Miner Eng 19(6–8), pp. 641–650.
  • [29] Sutherland, K.L. 1948. Physical chemistry of flotation; Kinetics of the flotation process. Journal of Physical & Colloid Chemistry 52(2), pp. 394–425.
  • [30] Sven-Nilsson 1934. Effect of contact time between mineral and air bubbles on flotation. Colloid and Polymer Science 69(2), pp. 230–232.
  • [31] Vamvuka, D. and Agridiotis, V. 2001. The effect of chemical reagents on lignite flotation. Int J Miner Process 61(3), pp. 209–224.
  • [32] Wójcik et al. 1990 – Wójcik, W., Jańczuk, B. and Bialopiotrowicz, T. 1990. The relationship between the floatability of Low-Rank coal and its adhesion to air bubbles in aqueous diacetone alcohol solutions. Sep Sci Technol 25(6), pp. 689–699.
  • [33] Xia, W. and Xie, G. 2014. Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technol 264, pp. 31–35.
  • [34] Xia et al. 2014 – Xia, W., Yang, J. and Liang, C. 2014. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Appl Surf Sci 293(4), pp. 293–298.
  • [35] Xia et al. 2012 – Xia, W., Yang, J. and Zhao, Y. 2012. Improving floatability of taixi anthracite coal of mild oxidation by grinding. Physicochem Probl Mi 48(2), pp. 393−401.
  • [36] Xia et al. 2013 – Xia, W.C., Yang, J.G. and Zhu, B. 2013 . The improvement of grindability and floatability of oxidized coal by microwave pre-treatment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36(1), pp. 23–30.
  • [37] Yoon, R. and Yordan, J. 1991. Induction time measurements for the Quartz-Amine flotation system. Colloid Interface Science 141(2), pp. 374–383.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1957995c-cd6f-468d-bff0-80d0ec840910
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.