PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing Electrical Discharge Machining Performance by Mixing Nano Chromium Trioxide Powder with Soybean Dielectric to Machine Inconel 718 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inconel 718 super alloy is suitable for components exposed to high temperatures and demanding high strength; it is one of the hardest alloys to machine by conventional processes due to its properties. Nano Powder mixed electrical discharge machining is one of the most sophisticated processes to produce precise three dimensional complicated forms of hard metals through a thermo-physical process, so it is suitable for machining Inconel 718. This study reports an experimental investigation to improve the machining performance of Inconel 718 super alloy by adding nano chromium oxide powder particles to biodegradable and renewable soybean oil, which is used as a dielectric fluid to preserve the environment, with a magnetic field to assist in improving the process performance. The effects of machining parameters, namely peak current, pulse on time, powder concentration, and magnetic field on the responses in terms of white layer thickness, heat affected zone, surface roughness, material removal rate, and surface crack density were investigated. The observed results manifested that the addition of nano chromium oxide particles to dielectric fluid enhances the process performance. The white layer thickness and heat affected zone improved by 43.93% and 48.82%, respectively. The enhancements in measured surface roughness and material removal rate were 51.76% and 20.62%, respectively. Micrographs of scanning electron microscope verifies that the number of cracks on the machined surface with 4 g/l of nano (Cr2O3) powder addition was reduced by half, and surface crack density improved by 10.31%, in comparison to machining without powder addition. It is observed that the current had the largest effect on the responses, followed by powder concentration, pulse on time, and magnetic field.
Twórcy
  • Production Engineering and Metallurgy Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq
Bibliografia
  • 1. Jarosław B. surface topography of inconel 718 alloy in finishing WEDM. Adv. Sci. Technol. Res. J. 2022; 16(1): 47–61. doi: 10.12913/22998624/142962.
  • 2. Perumal A., Azhagurajan A., Prithivirajan R., Kumar S.S. Experimental investigation and optimization of process parameters in Ti – (6242) alpha–beta alloy using electrical discharge machining. J. Inorg. Organomet. Polym. Mater. 2021; 31(4): 1787–1800. doi: 10.1007/s10904-020-01786-1.
  • 3. Al-Amin M. Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review. Precis. Eng. 2020 Sept; 66: 531–549. doi: 10.1016/j.precisioneng.2020.09.002.
  • 4. Mohanty S., Mishra A., Nanda B. K.,. Routara B. C. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alexandria Eng. J. 2018 Jun; 57(2): 609–619. doi: 10.1016/j.aej.2017.02.006.
  • 5. Ramesh S., Jenarthanan M. P. Optimizing the powder mixed EDM process of nickel based super alloy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021 Aug; 235(4): 1092–1103. doi: 10.1177/09544089211002782.
  • 6. Oskueyan S., Abedini V.,. Hajialimohamadi A. Effects of hybrid Al2O3- SiO2 nanoparticles in deionized water on the removal rate and surface roughness during electrical discharge machining of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021. doi: 10.1177/09544089211059311.
  • 7. Zhang Z., Zhang Y., Ming W., Zhang Y., Cao C., Zhang G. A review on magnetic field assisted electrical discharge machining. J. Manuf. Process. 2020 Dec; 64, 694–722. doi: 10.1016/j.jmapro.2021.01.054.
  • 8. Bains P.S., Singh S., Payal S.H. S., Kaur S. Magnetic field influence on surface modifications in powder mixed. Silicon. 2018. doi: 10.1007/s12633-018-9907-z.
  • 9. Nor Ain Jamil Hosni M. A. L. Experimental investigation and economic analysis of surfactant (Span-20) in powder mixed electrical dischargemachining (PMEDM) of AISI D2 hardened steel. Mach. Sci. Technol. 2020; 24(2): 1–27. doi: 10.1080/10910344.2019.1698609.
  • 10. Paswan K., Pramanik A., Chattopadhyaya S. Machining performance of Inconel 718 using graphene nanofluid in EDM. Mater. Manuf. Process. 2020 Jan; 35(1): 33–42. doi: 10.1080/10426914.2020.1711924.
  • 11. Kumar A., Mandal A., Dixit A. R., Das A. K., Kumar S., Ranjan R. Comparison in the performance of EDM and NPMEDM using Al2O3 nanopowder as an impurity in DI water dielectric. Int. J. Adv. Manuf. Technol. 2019; 100(5–8): 1327–1339. doi: 10.1007/s00170-018-3126-z.
  • 12. Machno M., Trajer M., Bizoń W., Czeszkiewicz A. A study on accuracy of micro-holes drilled in Ti-6Al-4V alloy by using electrical discharge machining process. Adv. Sci. Technol. Res. J., 2022; 16(6): 55–72. doi: 10.12913/22998624/155224.
  • 13. Muthuramalingam T. Experimental investigation of white layer formation on machining silicon steel in PMEDM process. Silicon. 2020; doi: 10.1007/s12633-020-00740-7.
  • 14. Paswan K. An analysis of microstructural morphology, surface topography, surface integrity, recast layer, and machining performance of graphene nanosheets on Inconel 718 superalloy: Investigating the impact on EDM characteristics, surface characterizations, and opt. J. Mater. Res. Technol. 2023 Aug, 27: 7138–7158. doi: 10.1016/j.jmrt.2023.11.080.
  • 15. Jafarian F. Electro discharge machining of Inconel 718 alloy and process optimization. Mater. Manuf. Process. 2020; 35(1): 95–103. doi: 10.1080/10426914.2020.1711919.
  • 16. Chaudhari R., Vora J., de Lacalle L. N. L., Khanna S., Patel V. K., Ayesta I. Parametric optimization and effect of nano-graphene mixed dielectric fluid on performance of wire electrical discharge machining process of Ni55.8Ti shape memory alloy. Materials (Basel)., 2021; 14(10): doi: 10.3390/ma14102533.
  • 17. Talla G., Gangopadhyay S., Biswas C. K. Influence of powder-mixed EDM on surface morphology and metallurgical alterations of Inconel 625. Aust. J. Mech. Eng. 2023; 21(5): 1533–1546. doi: 10.1080/14484846.2021.2022580.
  • 18. Paswan K. An Analysis of Machining Response Parameters, Crystalline Structures, and Surface Topography During EDM of Die-Steel Using EDM Oil and Liquid-Based Viscous Dielectrics: A Comparative Analysis of Machining Performance. Arab. J. Sci. Eng. 2023; 48(9): 11941–11957. doi: 10.1007/s13369-023-07626-x.
  • 19. Jadam T., Sahu S. K., Datta S., Masanta M. Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multiwalled carbon nanotube added to the dielectric media. Sādhanā, 2020; 0123456789. doi: 10.1007/s12046-020-01378-2.
  • 20. Srivastava S., Vishnoi M., Gangadhar M. T., Kukshal V. An insight on Powder Mixed Electric Discharge Machining: A state of the art review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023; 237(5): 657–690. doi: 10.1177/09544054221111896
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19500fe1-134e-47a3-a6b3-8a4784f704e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.