PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of supercritical foaming conditions on properties of polymer scaffolds for tissue engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of experimental investigations into foaming process of poly(ε-caprolactone) using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa), temperature (323-373 K) and time of saturation (1-6 h) on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM), x-ray microtomography (μ-CT) and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone) solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.
Rocznik
Strony
535--541
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00 - 645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00 - 645 Warsaw, Poland
Bibliografia
  • 1. Chen Chuan-Xin, Liu Qian–Qian, Xin Xin, Guan Yi-Xin, Yao Shan-Jing, 2016. Pore formation of poly(ɛ-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J. Supercrit. Fluids, 117, 279-288. DOI: 10.1016/j.supflu.2016.07.006.
  • 2. Curia S., De Focatiis D.S.A., Howdle S.M., 2015. High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly (ε-caprolactone). Polymer, 69, 17–24. DOI: 10.1016/j.polymer.2015.05.026.
  • 3. Gloria A., Causa F., Russo T., Battista E., Della Moglie R., Zeppetelli S., De Santis R., Netti P.A., Ambrosio L., 2012. Three-dimensional poly (ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules, 13, 11, 3510–3521. DOI: 10.1021/bm300818y.
  • 4. Gualandi C., White L.J., Chen L., Gross R.A., Shakesheff K.M., Howdle S.M., Scandola M., 2010. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomater., 6, 1, 130–136. DOI: 10.1016/j.actbio.2009.07.020.
  • 5. Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R., 2005. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 26, 3961-397. DOI: 10.1016/j.biomaterials.2004.10.018.
  • 6. Jacobs L.J.M., Danen K.C.H., Kemmere M.F., Keurentjes J.T.F., 2007. A parametric study of polystyrene-co-methylmethacrylate foams using supercritical carbon dioxide as a blowing agent. Polymer, 48, 3771-3780. DOI: 10.1016/j.polymer.2007.05.002.
  • 7. Karimi M., Heuchel M., Weigel T., Schossig M., Hofmann D., Lendlein A., 2012. Formation and size distribution of pores in poly(ɛ-caprolactone) foams prepared by pressure quenching using supercritical CO2. J. Supercrit. Fluids, 61, 175-190. DOI: 10.1016/j.supflu.2011.09.022.
  • 8. Kweon H.Y., Yoo M.K., Park I.K., Kim T.H., Lee H.C., Lee H.-S., Oh J.-S., Akaike T., Cho C.-S., 2003. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24, 5, 801–808. DOI: 10.1016/S0142-9612(02)00370-8.
  • 9. Liao X., Zhang H., He T., 2012. Preparation of porous biodegradable polymer and its nanocomposites by supercritical CO2 foaming for tissue engineering. J. Nanomaterials, 2012, Article ID 836394. DOI: 10.1155/2012/836394.
  • 10. Markočič E., Škerget M., Knez Ž., 2013. Effect of temperature and pressure on the behavior of poly (ε-caprolactone) in the presence of supercritical carbon dioxide. Ind. Eng. Chem. Res., 52, 15594-15601. DOI: 10.1021/ie402256a.
  • 11. Mathieu L.M., Mueller T.L., Bourban P.E., Pioletti D.P., Muller R., Manson J.A.E., 2006. Architecture and properties of anisotropic polymer composite scaffold for bone tissue engineering. Biomaterials, 27, 905-916. DOI: 10.1016/j.biomaterials.2005.07.015.
  • 12. Nalawade S.P., Picchioni F., Janssen L.P.B.M., 2006. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci., 31, 19-43. DOI: 10.1016/j.progpolymsci.2005.08.002.
  • 13. Reverchon E., Cardea S., Rapuano C., 2008. A new supercritical fluid-based process to produce scaffolds of tissue replacement. J. Supercrit. Fluids, 45, 365-373. DOI: 10.1016/j.supflu.2008.01.005.
  • 14. Takahashi S., Hessler J.C., Kiran E., 2012. Melting behaviour of biodegradable polyesters in carbon dioxide at high pressures. J. Supercrit. Fluids, 72, 278-287. DOI: 10.1016/j.supflu.2012.09.009.
  • 15. Tarabasz K., Henczka M., 2016. Experimental investigations into foaming of biodegradable polymers using scCO2. Inż. Ap. Chem., 55, 40-41.
  • 16. Tarabasz, K., Krzysztoforski, J., Szwast, M., Henczka, M., 2016. Investigation of the effect of treatment with supercritical carbon dioxide on structure and properties of polypropylene microfiltration membranes. Matt. Letters, 163, 54-57. DOI: 10.1016/j.matlet.2015.10.010.
  • 17. Tayton E., Purcell M., Arvold A., Smith J.O., Kalra S., Briscoe A., Shakesheff K., Howdle S.M., Dunlop D.G., Oreffo R.O.C., 2012. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting? Acta Biomater., 8, 1918-1927. DOI: 10.1016/j.actbio.2012.01.024.
  • 18. Tsivintzelis I., Angelopoulou A.G., Panayiotou C., 2007. Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer, 48, 5928-5929. DOI: 10.1016/j.polymer.2007.08.004.
  • 19. Tsivintzelis I., Pavlidou E., Panayiotou C., 2006. Biodegradable polymer foams prepared with supercritical CO2- ethanol mixtures as blowing agent. J. Supercrit. Fluids, 42, 265-272. DOI: 10.1016/j.supflu.2007.02.009.
  • 20. White L.J., Hutter V., Tai H., Howdle S.M., Shakesheff K.M., 2012. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater., 8, 61-71. DOI: 10.1016/j.actbio.2011.07.032.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19469ed3-4fbc-4571-98bc-a14d53d77e02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.