PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal performance analysis of manned airships in a thermally variable environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The safety and reliability of the manned airship depend to a considerable extent on its thermal performance. In this paper, heat balance equations are developed and solved in the C++ programming language. The temperature variation of the enclosure, gasbag, and nacelles of the manned airship is investigated. In addition, the effects of season, latitude, and orientation on the thermal performance of the manned airship and the airship nacelle are investigated. The results show that: (1) The average temperature difference of the nacelle surface at the same time is 25 K, while the maximum temperature difference in the nacelle is 29 K during the day, (2) the temperature distribution in the nacelle is similar in spring and autumn, with maximum temperature between 306 K and 309 K. The maximum temperature in the nacelle is between 300 K and 303 K in winter while the maximum temperature in the nacelles is between 309 K and 315 K in summer, (3) as the flight position of the manned airship changes from 20°N to 60°N, the average nacelle temperature varies slightly by about 1 K. However, as the latitude increases, the high- temperature region shifts from the bottom of the nacelle to the side of the nacelle, and (4) the temperature distribution of the upper envelope of the airship varies considerably with orientation. However, the average temperature of the nacelle is less impacted by orientation. These results are useful for understanding the thermal performance of manned airships.
Rocznik
Strony
art. no. e143105
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
autor
  • College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
autor
  • College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
autor
  • Key Laboratory of Aircraft Environment Control and Life Support, Nanjing University of Aeronautics and Astronautics, China
Bibliografia
  • [1] B.E. Prentice and R. Knotts, “Cargo airships: international competition,” J. Transp. Technol., vol. 4, no. 3, pp. 187–195, 2014, doi: 10.4236/jtts.2014.43019.
  • [2] A. Ceruti and P. Marzocca, “Conceptual approach to unconventional airship design and synthesis,” J. Aerosp. Eng., vol. 27, no. 6, pp. 04014035.1–04014035.14, 2014, doi: 10.1061/(ASCE)AS.1943-5525.0000344.
  • [3] J. Meng, M. Li, L. Zhang, and M. Lv, “Effect of flight parameters on thermal performance of a hybrid air vehicle for cargo transportation,” Appl. Therm. Eng., vol. 168, p. 114807, 2019, doi: 10.1016/j.applthermaleng.2019.114807.
  • [4] M. Manikandan and R.S. Pant, “Research and advancements in hybrid airships – A review,” Prog. Aerosp. Sci., vol. 127, p. 100741, 2021, doi: 10.1016/j.paerosci.2021.100741.
  • [5] J. Meng, M. Li, N. Ma, and L. Liu, “Multidisciplinary design optimization of a lift-type hybrid airship,” J. Beijing Univ. Aeronaut. Astronaut., vol. 47, no. 1, pp. 72–83, 2021, doi: 10.13700/j.bh.1001-5965.2020.0012.
  • [6] M. Manikandan and R.S. Pant, “Conceptual design optimization of high-altitude airship having a tri-lobed envelope,” Adv. Multidiscip. Anal. Optim., pp. 49–61, 2020, doi: 10.1007/978-981-15-5432-2_4.
  • [7] C. Stockbridge, A. Ceruti, and P. Marzocca, “Airship research and development in the areas of design, structures, dynamics and energy systems,” Int. J. Aeronaut. Space Sci., vol. 13, no. 2, pp. 170–187, 2012, doi: 10.5139/IJASS.2012.13.2.170.
  • [8] J. Wang, C. Li, and X. Meng, “A general calculation method to specify center-of-buoyancy for the stratospheric airship with multiple gas cells,” Adv. Space Res., vol. 67, no. 8, pp. 2517–2533, 2021, doi: 10.1016/j.asr.2021.01.014.
  • [9] L. Knap, C. Graczykowski, H. Szulc, and Z. Wolejsza, “Strategies for reduction of energy consumption during ascending and descending process of modern telescopic HAPS aerostats,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp. 155–168, 2016, doi: 10.24425/bpasts.2020.131833.
  • [10] J. Wang, X. Meng, C. Li, and W. Qiu, “Analysis of long-endurance station-keeping flight scenarios for stratospheric airships in the presence of thermal effects,” Adv. Space Res., vol. 67, no. 12, pp. 4121–4141, 2021, doi: 10.1016/j.asr.2021. 01.048.
  • [11] W. Yao, X. Lu, C.Wang, and R. Ma, “A heat transient model for the thermal behavior prediction of stratospheric airships,” Appl. Therm. Eng., vol. 70, no. 1, pp. 380–387, 2014, doi: 10.1016/j.applthermaleng.2014.05.050.
  • [12] H. Shi, B. Song, Q. Yao, and X. Cao, “Thermal performance of stratospheric airships during ascent and descent,” J. Thermophys Heat Transfer, vol. 32, no. 4, pp. 816–821, 2009, doi: 10.2514/1.42634.M.
  • [13] M. Lv, Z. Yao, L. Zhang, H. Du, J. Meng, and J. Li, “Effects of solar array on the thermal performance of stratospheric airship,” Appl. Therm. Eng., vol. 124, pp. 22–33, 2017, doi: 10.1016/j.applthermaleng.2017.06.018.
  • [14] Q. Liu, Y, Yang, Y. Cui, and J. Cai, “Thermal performance of stratospheric airship with photovoltaic array,” Adv. Space Res., vol. 59, no. 6, pp. 1486–1501, 2017, doi: 10.1016/j.asr.2016.12.029.
  • [15] H. Shi, J. Chen, L. Hu, S. Geng, T. Zhang, and Y. Feng, “Multi-parameter sensitivity analysis on thermal characteristics of stratospheric airship,” Case Stud. Therm. Eng., vol, 25, p. 100902, 2021, doi: 10.1016/j.csite.2021.100902.
  • [16] H. Shi,; S. Geng, and X. Qian, “Thermodynamics analysis of a stratospheric airship with hovering capability,” Appl. Therm. Eng., vol. 146, p. 600–607, 2019, doi: 10.1016/j.applthermaleng.2018.10.034.
  • [17] H. Shi, J. Chen, S. Geng, T. Zhang, and X. Qian, “Envelope radiation characteristics of stratospheric airship,” Advances in Space Research, vol. 68, pp. 600–607, 2021, doi: 10.1016/j.applthermaleng.2018.10.034.
  • [18] Q. Dai and X. Fang, “Numerical study of forced convective heat transfer around airships,” Adv. Space Res., vol. 57, no. 3, pp. 776–781, 2016, doi: 10.1016/j.asr.2015.11.031.
  • [19] Q. Dai, L. Cao, G. Zhang, and X. Fang, “Thermal performance analysis of solar array for solar powered stratospheric airship,” Appl. Therm. Eng., vol. 171, p. 115077, 2020, doi: 10.1016/j.applthermaleng.2020.115077.
  • [20] H. Zhang, X. Fang, Y. Wang, and L. Zhang, “Effect of vapor condensation on ascending performance of stratospheric airship,” Adv. Space Res., vol. 65, no. 8, pp. 2062–2071, 2020, doi: 10.1016/j.asr.2020.01.027.
  • [21] W. Zheng, X. Zhang, R. Ma, and Y. Li, “A Simplified Thermal Model and Comparison Analysis for a Stratospheric Lighter-Than-Air Vehicle,” J. Heat Transfer, vol. 140, no. 2, p. 022801, 2019, doi: 10.1115/1.4037194.
  • [22] W. Zhu, Y. Xu, J. Li, H. Du, and L. Zhang, “Research on optimal solar array layout for near-space airship with thermal effect,” Solar Energy, vol. 170, pp. 1–13, 2018, doi: 10.1016/j.solener.2018.05.023.
  • [23] J. Wang, X. Meng, and C. Li, “Recovery trajectory optimization of the solar-powered stratospheric airship for the station-keeping mission,” Acta Astronaut., vol. 178, pp. 159–177, 2021, doi: 10.1016/j.actaastro.2020.08.016.
  • [24] J. Li, M. Lv, D. Tan, W. Zhu, K. Sun, and Y. Zhang, “Output performance analyses of solar array on stratospheric airship with thermal effect,” Appl. Therm. Eng., vol. 104, pp. 743–750, 2016, doi: 10.1016/j.applthermaleng.2016.05.122.
  • [25] Y. Zhang, J. Li, M. Lv, D. Tan, W. Zhu, and K. Sun, “Simplified analytical model for investigating the output power of solar array on stratospheric airship,” Int. J. Aeronaut. Space Sci., vol. 17, no. 3, pp. 432–441, 2016, doi: 10.5139/IJASS.2016.17.3.432.
  • [26] K. Harada, K. Eguchi, M. Sano, and S. Sasa, “Experimental study of thermal modeling for stratospheric platform airship,” Aiaas Aviation Technology, Integration, & Operations, 2003, doi: 10.1016/j.applthermaleng.2017.05.168.
  • [27] D. Xing, Q. Dai, and C. Liu, “Thermal characteristics and output power performances analysis of solar powered stratospheric airships,” Appl. Therm. Eng., vol. 123, pp. 770–781, 2017, doi: 10.1016/j.applthermaleng.2017.05.168.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1945adbc-620c-4f0a-a0fd-6dfc7583f2d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.