PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the seismic performance behaviour of hybrid precast beam-to-column connections

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to withstand challenges such as earthquakes, it is important to appropriately design the beam-to-column connection of precast structures. Numerous precast connections were designed to be used worldwide to attain satisfactory seismic performance. The failures observed for many beam-column connections were primarily due to the brittle behaviour of poor connection details between the precast concrete members. This review article examines past experimental studies which used hybrid precast connections comprised of three types: (1) dry and wet connections with steel sections (Type I), (2) composite concrete (Type II), and (3) composite concrete and steel sections (Type III). The seismic performance behaviour of these connection types was evaluated and compared with that of the monolithic connections. The analysis showed that both the dry semi-rigid and rigid connections Type I can be implemented in the seismic zones. In addition, most of the wet connections Type I, Type II, and Type III can simulate the behaviour of monolithic rigid connections. Therefore, the wet connections Type I, Type II, and Type III can withstand high seismic excitations. Overall, the performance of hybrid dry connection Type I can be improved by using strengthening technique methods in the connection to maintain the continuity of the PC beam. Moreover, the use of composite materials with and without the steel sections as connector elements in the connection (Type II and Type III) can be a feasible method to simulate the seismic performance of monolithic connections.
Rocznik
Strony
art. no. e35, 2023
Opis fizyczny
Bibliogr. 140 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • School of Civil and Environmental Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • School of Civil and Environmental Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
autor
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
  • Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
Bibliografia
  • 1. Elliott K. Precast concrete structures. 2nd ed. Boca Raton: CRC Press; 2019.
  • 2. Psycharis IN, Mouzakis HP. Shear resistance of pinned connections of precast members to monotonic and cyclic loading. Eng Struct. 2012;41:413-27.
  • 3. Yuksel E, Karadogan HF, Bal İE, Ilki A, Bal A, Inci P. Seismic behavior of two exterior beam-column connections made of normal-strength concrete developed for precast construction. Eng Struct. 2015;99:157-72.
  • 4. Ghayeb HH, Razak HA, Ramli Sulong NH. Performance of dowel beam-to-column connections for precast concrete systems under seismic loads: a review. Constr Build Mater. 2020;237:117582.
  • 5. Toniolo G, Colombo A. Precast concrete structures: the lessons learned from the L’Aquila earthquake. Struct Concr. 2012;13:73-83.
  • 6. Magliulo G, Ercolino M, Petrone C, Coppola O, Manfredi G. The emilia earthquake: seismic performance of precast reinforced concrete buildings. Earthq Spect. 2019;30:891-912.
  • 7. Fib. Seismic design of precast concrete building structures: State-of-the-art report, federation internationale de beton, Bulletin 27, Lausanne. 2003.
  • 8. Cardenas, Luz. The Chilean Earthquake and Tsunami 2010: A Multidisciplinary Study of Mw8. 8, Maule: WIT Press; 2013.
  • 9. Liu H, Yan Q, Du X. Seismic performance comparison between precast beam joints and cast-in-place beam joints. Adv Struct Eng. 2016;2016:1369433216674952.
  • 10. Blandon JJ, Rodriguez ME. Behavior of connections and floor diaphragms in seismic-resisting precast concrete buildings. PCI J. 2005;50:56-75.
  • 11. Nakaki SD, Englekirk RE, Plaehn JL. Ductile connectors for a precast concrete frame. PCI J. 1994;39:46-59.
  • 12. Mitchell D, DeVall RH, Saatcioglu M, Simpson R, Tinawi R, Tremblay R. Damage to concrete structures due to the 1994 Northridge earthquake. Can J Civ Eng. 1995;22:361-77.
  • 13. Faggiano B, Iervolino I, Magliulo G, Manfredi G, Vanzi I. 2.11 Post-event analysis of industrial structures behavior during L’Aquila earthquake. 2009.
  • 14. Zoubek B, Isakovic T, Fahjan Y, Fischinger M. Cyclic failure analysis of the beam-to-column dowel connections in precast industrial buildings. Eng Struct. 2013;52:179-91.
  • 15. Savoia M, Buratti N, Vincenzi L. Damage and collapses in industrial precast buildings after the 2012 Emilia earthquake. Eng Struct. 2017;137:162-80.
  • 16. Belleri A, Torquati M, Riva P. Seismic performance of ductile connections between precast beams and roof elements. Mag Concr Res. 2013;66:553-62.
  • 17. Bruneau M. Building damage from the Marmara, Turkey earthquake of August 17, 1999. J Seismolog. 2002;6:357-77.
  • 18. Alcocer SM, Carranza R, Perez-Navarrete D, Martinez R. Seismic tests of beam-to-column connections in a precast concrete frame. PCI J. 2002;47:70-89.
  • 19. Uckan E. Lifeline damage caused in the 23 October (Mw = 7.2) 2011 and 9 November (M = 5.6) 2011, Van earthquakes in eastern Turkey. International Efforts in Lifeline Earthquake Engineering: ASCE; 2014. p. 51-8.
  • 20. Magliulo G, Cimmino M, Ercolino M, Manfredi G. Cyclic shear tests on RC precast beam-to-column connections retrofitted with a three-hinged steel device. Bull Earthq Eng. 2017;15:3797-817.
  • 21. Arslan MH, Korkmaz HH, Gulay FG. Damage and failure pattern of prefabricated structures after major earthquakes in Turkey and shortfalls of the Turkish Earthquake code. Eng Fail Anal. 2006;13:537-57.
  • 22. Hu G, Huang W, Xie H. Mechanical behavior of a replaceable energy dissipation device for precast concrete beam-column connections. J Constr Steel Res. 2020;164:105816.
  • 23. Carydis P, Castiglioni C, Lekkas E, Kostaki I, Lebesis N, Drei A. The Emilia Romagna, May 2012 earthquake sequence. The influence of the vertical earthquake component and related geoscientific and engineering aspects. Ingegneria Sismica. 2012;29:31-58.
  • 24. Bovo M, Savoia M. Numerical simulation of seismic-induced failure of a precast structure during the Emilia earthquake. J Perform Constr Facil. 2018;32:04017119.
  • 25. ACI318. American Concrete Institute, ACI318. Building Code Requirements for Structural Concrete and Commentary (ACI 318-19): An ACI Standard. American Concrete Institute Farmington Hills, Michigan, USA. 2019.
  • 26. Ericson A, Warnes C. Seismic technology for precast concrete systems. Concrete Industry Bulletin, Concrete Industry Board. Inc, Spring, USA. 1990.
  • 27. Kurama YC, Sritharan S, Fleischman RB, Restrepo JI, Henry RS, Cleland NM et al. Seismic-resistant precast concrete structures: state of the art: American Society of Civil Engineers; 2018.
  • 28. Rodriguez D, Brunesi E, Nascimbene R. Fragility and sensitivity analysis of steel frames with bolted-angle connections under progressive collapse. Eng Struct. 2021;228:111508.
  • 29. Ravasini S, Belletti B, Brunesi E, Nascimbene R, Parisi F. Nonlinear dynamic response of a precast concrete building to sudden column removal. Appl Sci. 2021;11:599.
  • 30. Ghosh SK, Nakaki SD, Krishnan K. Precast structures in regions of high seismicity: 1997 UBC design provisions. PCI J. 1997;42:76-91.
  • 31. Elliott KS, Davies G, Ferreira M, Gorgun H, Mahdi A. Can precast concrete structures be designed as semi-rigid frames? Pt. 1: the experimental evidence. Structural Engineer. 2003;81:14-27.
  • 32. Aninthaneni P, Dhakal R, Marshall J, Bothara J. Experimental investigation of “dry” jointed precast concrete frame sub-assemblies with steel angle and tube connections. Bull Earthq Eng. 2020;18:3659-81.
  • 33. Aninthaneni P, Dhakal R. Analytical and numerical investigation of “dry” jointed precast concrete frame sub-assemblies with steel angle and tube connections. Bull Earthq Eng. 2019;17:4961-85.
  • 34. Hong W-K, Kim G, Lim C, Kim S. Development of a steel-guide connection method for composite precast concrete components. J Civ Eng Manag. 2017;23:59-66.
  • 35. Hu J-Y, Hong W-K. Steel beam-column joint with discontinuous vertical reinforcing bars. J Civ Eng Manag. 2017;23:440-54.
  • 36. Ketiyot R, Hansapinyo C. Seismic performance of interior precast concrete beam-column connections with T-section steel inserts under cyclic loading. Earthq Eng Eng Vib. 2018;17:355-69.
  • 37. Bournas DA, Negro P, Molina FJ. Pseudodynamic tests on a full-scale 3-storey precast concrete building: behavior of the mechanical connections and floor diaphragms. Eng Struct. 2013;57:609-27.
  • 38. ACI-ASCE. Recommendations for Design of Beam‐Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R‐02). American Concrete Institute, Farmington Hills, Michigan, USA; 2002.
  • 39. Standard B. Eurocode 8: Design of structures for earthquake resistance. 2011.
  • 40. Iervolino I, Maddaloni G, Cosenza E. Eurocode 8 compliant real record sets for seismic analysis of structures. J Earthq Eng. 2008;12:54-90.
  • 41. ACI318. American Concrete Institute (ACI). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute Farmington Hills, Michigan, USA. American Concrete Institute Farmington Hills, Michigan, USA; 2005.
  • 42. Nakaki SD, Stanton JF, Sritharan S. An overview of the PRESSS five-story precast test building. PCI J. 1999;44:26-39.
  • 43. Palmieri L, Saqan E, French C, Kreger M. Ductile connections for precast concrete frame systems. ACI Special Publication. 1996;162.
  • 44. Stanton J. The PRESSS program in the USA and Japan-Seismic testing of precast concrete structures. Proceedings of the COST C1 international conference on control of the semi-rigid behaviour of civil engineering structural connections, Liege1998. p. 13-24.
  • 45. Priestley MJN. The PRESSS program current status and proposed plans for Phase III. PCI J. 1996;41:22-40.
  • 46. Sritharan S, Priestley MN, Seible F, Igarashi A. A five-story precast concrete test building for seismic conditions-an overview. Proceedings 12th world conference on earthquake engineering; 2000.
  • 47. Stanton J, Stone WC, Cheok GS. A hybrid reinforced precast frame for seismic regions. PCI J. 1997;42:20-3.
  • 48. Fan Jj, Wu G, Xu Al, Feng Dc, Chen Zp. Experimental study on the seismic performance of novel precast reinforced concrete grid moment‐resisting frames. Struct Concr. 2020;21:2028-43.
  • 49. Ngo TT, Tran TT, Pham TM, Hao H. Performance of geopolymer concrete in monolithic and non-corrosive dry joints using CFRP bolts under cyclic loading. Compos Struct. 2021;258:113394.
  • 50. Negro P, Toniolo G. Design guidelines for connections of precast structures under seismic actions. Report EUR 25377 EN, European Commission; 2012.
  • 51. Toniolo G. Experimental behaviour of new/improved connections. Part 1:Contribution of Politecnico di Milano (POLIMI); 2012.
  • 52. Dal Lago B, Negro P, Dal Lago A. Seismic design and performance of dry-assembled precast structures with adaptable joints. Soil Dyn Earthq Eng. 2018;106:182-95.
  • 53. Psycharis IN, Mouzakis HP, Carydis PG. Experimental investigation of the seismic behaviour of precast structures with pinned beam-to-column connections. Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering: Springer; 2012. p. 345-65.
  • 54. PCI CDC. PCI Connections Manual for Precast and Prestressed Concrete Construction. Chicago, IL: PCI-225 0. 2008;22:25-50.
  • 55. Toniolo G. European research on seismic behaviour of precast structures. 2012 NZSEE conference, Lausanne, Switzerland; 2012.
  • 56. Shiohara H, Watanabe F. The Japan PRESS precast concrete connection design. 12th WCEE, Aukland; 2000.
  • 57. Ertas O, Ozden S, Ozturan T. Ductile connections in precast concrete moment resisting frames. PCI J. 2006;51:66-76.
  • 58. Xue WC, Yang XL. Seismic tests of precast concrete, moment-resisting frames and connections. PCI J. 2010;55:102-21.
  • 59. Khaloo AR, Parastesh H. Cyclic loading of ductile precast concrete beam-column-connection. ACI Struct J. 2003;100:291-6.
  • 60. Aninthaneni P, Dhakal R. Conceptual development: Low loss precast concrete frame building system with steel connections. NZSEE Conference; 2014.
  • 61. Ghayeb HH, Razak HA, Sulong NHR. Development and testing of hybrid precast concrete beam-to-column connections under cyclic loading. Constr Build Mater. 2017;151:258-78.
  • 62. Hu JY, Hong WK, Park SC. Experimental investigation of precast concrete based dry mechanical column-column joints for precast concrete frames. Struct Design Tall Spec Build. 2017;26:e1337.
  • 63. Ersoy U, Tankut T. Precast concrete members with welded plate connections under reversed cyclic loading. PCI J. 1993;38:94-100.
  • 64. Korkmaz HH, Tankut T. Performance of a precast concrete beam-to-beam connection subject to reversed cyclic loading. Eng Struct. 2005;27:1392-407.
  • 65. Xiao J, Ding T, Zhang Q. Structural behavior of a new moment-resisting DfD concrete connection. Eng Struct. 2017;132:1-13.
  • 66. Bhatt P, Kirk D. Tests on an improved beam column connection for precast concrete. ACI J Proc. 1985;1:1.
  • 67. Seckin M, Fu HC. Beam-column connections in precast reinforced-concrete construction. ACI Struct J. 1990;87:252-61.
  • 68. Vidjeapriya R, Jaya K. Experimental study on two simple mechanical precast beam-column connections under reverse cyclic loading. J Perform Constr Facil. 2012;27:402-14.
  • 69. Naik CB, Joshi DD, Patel PV. Experimental evaluation of performance of dry precast beam column connection. Adv Struct Eng. 2015;2015:2333-42.
  • 70. Englekirk R. Development and testing of a ductile connector for assembling precast concrete beams and columns. PCI J. 1995;40:36-51.
  • 71. Reinhardt HW. Demountable concrete structures-an energy and material saving building concept. Int J Sustain Mater Struct Syst. 2012;1:18-28.
  • 72. Ding T, Xiao J. Behavior of concrete beam-column frame joints with DfD connections: a simulation study with interface modelling. Eng Struct. 2019;189:347-58.
  • 73. Ding T, Xiao J, Zhang Q, Akbarnezhad A. Experimental and numerical studies on design for deconstruction concrete connections: an overview. Adv Struct Eng. 2018;21:2198-214.
  • 74. Nimse RB, Joshi DD, Patel PV. Experimental study on precast beam column connections constructed using RC corbel and steel billet under progressive collapse scenario. Struct Congr. 2015;2015:1101-17.
  • 75. Krishnan T, Purushothaman R. Effect of stiffeners in cleat angle based precast beam-column connections under reverse cyclic loading. Structures. London: Elsevier; 2020. p. 161-72.
  • 76. Zhong Y, Xiong F, Chen J, Deng A, Chen W, Zhu X. Experimental study on a novel dry connection for a precast concrete beam-to-column joint. Sustainability. 2019;11:4543.
  • 77. Rong X, Yang H, Zhang J. Experimental study of precast beamto-column joints with steel connectors under cyclic loading. Adv Struct Eng. 2020;2020:1369433220920448.
  • 78. Esmaeili J, Ahooghalandary N. Introducing an easy-install precast concrete beam-to-column connection strengthened by steel box and peripheral plates. Eng Struct. 2020;205:110006.
  • 79. Li Z, Qi Y, Teng J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading. Eng Struct. 2020;209:110217.
  • 80. Soydan C, Yuksel E, İrtem E. Retrofitting of pinned beam-column connections in RC precast frames using lead extrusion dampers. Bull Earthq Eng. 2018;16:1273-92.
  • 81. Ochs JE, Ehsani MR. Moment resistant connections in precast concrete frames for seismic regions. PCI J. 1993;38:64-75.
  • 82. Kulkarni SA, Li B, Yip WK. Finite element analysis of precast hybrid-steel concrete connections under cyclic loading. J Constr Steel Res. 2008;64:190-201.
  • 83. Ghayeb HH, Razak HA, Sulong NR. Seismic performance of innovative hybrid precast reinforced concrete beam-to-column connections. Eng Struct. 2020;202:109886.
  • 84. Li VC, Leung CK. Steady-state and multiple cracking of short random fiber composites. J Eng Mech. 1992;118:2246-64.
  • 85. Ghayeb HH, Sulong NR, Razak HA, Mo KH. Enhancement of seismic behaviour of precast beam-to-column joints using engineered cementitious composite. Eng Struct. 2022;255:113932.
  • 86. Zhang R, Matsumoto K, Hirata T, Ishizeki Y, Niwa J. Application of PP-ECC in beam-column joint connections of rigid-framed railway bridges to reduce transverse reinforcements. Eng Struct. 2015;86:146-56.
  • 87. Saghafi M, Shariatmadar H. Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites. Constr Build Mater. 2018;180:665-80.
  • 88. Ismail MK, Abdelaleem BH, Hassan AA. Effect of fiber type on the behavior of cementitious composite beam-column joints under reversed cyclic loading. Constr Build Mater. 2018;186:969-77.
  • 89. Chidambaram RS, Agarwal P. Seismic behavior of hybrid fiber reinforced cementitious composite beam-column joints. Mater Des. 2015;86:771-81.
  • 90. Chao S-H, Naaman AE, Parra-Montesinos GJ. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites. ACI Struct J. 2009;106:897.
  • 91. Choi HK, Choi YC, Choi CS. Development and testing of precast concrete beam-to-column connections. Eng Struct. 2013;56:1820-35.
  • 92. Gou S, Ding R, Fan J, Nie X, Zhang J. Experimental study on seismic performance of precast LSECC/RC composite joints with U-shaped LSECC beam shells. Eng Struct. 2019;189:618-34.
  • 93. Gefken PR, Ramey MR. Increased joint hoop spacing in type 2 seismic joints using fiber reinforced concrete. Struct J. 1989;86:168-72.
  • 94. Filiatrault A, Pineau S, Houde J. Seismic behavior of steel-fiber reinforced-concrete interior beam-column joints. ACI Struct J. 1995;92:543-52.
  • 95. Bayasi Z, Gebman M. Reduction of lateral reinforcement in seismic beam-column connection via application of steel fibers. Struct J. 2002;99:772-80.
  • 96. Soubra KS, Wight JK, Naaman AE. Cyclic response of fibrous cast-in-place connections in precast beam-column subassemblages. ACI Struct J. 1993;90:316-23.
  • 97. Junior LAO, Lima Araujo D, El Debs MK, Diogenes HJF. Precast beam-column connection subjected to cyclic and dynamic loadings. Struct Eng Int. 2017;27:114-26.
  • 98. Metelli G, Riva P. Behaviour of a beam to column “dry” joint for precast concrete elements. The 14th World Conference on Earthquake Engineering October2008. p. 12-7.
  • 99. Maya L, Albajar L. Beam-column connections for precast concrete frames using high performance fiber reinforced cement composites. High Performance Fiber Reinforced Cement Composites 6: Springer; 2012. p. 347-54.
  • 100. Maya LF, Albajar L, Portabella J, Lopez C, Moran F. Uso de hormigones con fibras de ultra-alta resistencia para el desarrollo de conexiones entre elementos prefabricados. Inf Constr. 2010;62:27-41.
  • 101. Parra-Montesinos GJ, Dasgupta P, Goel SC. Development of connections between hybrid steel truss-FRC beams and RC columns for precast earthquake-resistant framed construction. Eng Struct. 2005;27:1931-41.
  • 102. Parra GJ, Peterfreund SW, Chao SH. Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites. ACI Struct J. 2005;102:487-95.
  • 103. Maya ZC, Albajar L, Lopez C, Portabella J. Experimental assessment of connections for precast concrete frames using ultra high performance fibre reinforced concrete. Constr Build Mater. 2013;48:173-86.
  • 104. Fischer G, Li VC. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC). ACI Struct J. 2002;99:104-11.
  • 105. Abbas AA, Mohsin SMS, Cotsovos DM. Seismic response of steel fibre reinforced concrete beam-column joints. Eng Struct. 2014;59:261-83.
  • 106. Shakya K, Watanabe K, Matsumoto K, Niwa J. Application of steel fibers in beam-column joints of rigid-framed railway bridges to reduce longitudinal and shear rebars. Constr Build Mater. 2012;27:482-9.
  • 107. Zhang J, Ding C, Rong X, Yang H, Wang K, Zhang B. Experimental seismic study of precast hybrid SFC/RC beam-column connections with different connection details. Eng Struct. 2020;208:110295.
  • 108. Lim W-Y, Kim S. Experimental assessment of seismic vulnerability of precast concrete beam-to-beam connections with steel slit damper. Int J Steel Struct. 2017;17:1249-60.
  • 109. Belleri A, Marini A, Riva P, Nascimbene R. Dissipating and re-centring devices for portal-frame precast structures. Eng Struct. 2017;150:736-45.
  • 110. Huang L, Zhou Z, Peng Z, Ma J. Experimental investigation of a self-centering precast concrete beam-to-column connection with top and bottom friction energy dissipaters. Struct Design Tall Spec Build. 2020;29:e1707.
  • 111. Al-Salloum YA, Alrubaidi MA, Elsanadedy HM, Almusallam TH, Iqbal RA. Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates. Eng Struct. 2018;161:146-60.
  • 112. Ghobarah A, Said A. Shear strengthening of beam-column joints. Eng Struct. 2002;24:881-8.
  • 113. Vasconez RM, Naaman AE, Wight JK. Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading. PCI J. 1998;43:58-71.
  • 114. Bedirhanoglu I, Ilki A, Kumbasar N. Precast fiber reinforced cementitious composites for seismic retrofit of deficient rc joints-a pilot study. Eng Struct. 2013;52:192-206.
  • 115. American Society of Civil Engineers. Seismic rehabilitation of existing buildings. American Society of Civil Engineers, USA; 2007.
  • 116. ISO. International Organisation for Standardisation (ISO). Simplified design for mechanical connections between precast concrete structural elements in buildings (ISO 20987). UK 2019.
  • 117. Da Fonseca TdC, de Almeida S, de Hanai J. Beam-to-column connection of a precast concrete frame strengthened by NSM CFRP Strips. Advances in FRP composites in civil engineering: Springer; 2011. p. 858-61.
  • 118. Kim J, Hong WK, Kim JH. Experimental investigation of the influence of steel joints upon the flexural capacity of precast concrete columns. Struct Design Tall Spec Build. 2017;26:e1340.
  • 119. Li S, Li Q, Jiang H, Zhang H, Zhang L. Experimental research on seismic performance of a new-type of R/C beam-column joints with end plates. Shock Vib. 2017;2017:1.
  • 120. Genesio G. Seismic assessment of RC exterior beam-column joints and retrofit with haunches using post-installed anchors; 2012.
  • 121. Casotto C, Silva V, Crowley H, Nascimbene R, Pinho R. Seismic fragility of Italian RC precast industrial structures. Eng Struct. 2015;94:122-36.
  • 122. NZS. New Zealand Standard (NZS). Standards New Zealand, Appendix B: special provisions for the seismic design of ductile jointed precast concrete structural systems. NZS3101. New Zealand; 2005.
  • 123. NZS. New Zealand Standard (NZS). Concrete structures standard: part 1-the design of concrete structures and part 2-commentary, standards New Zealand. Wellingto (NZS, 3101). New Zealand; 2006.
  • 124. Pampanin S, Bolognini D, Pavese A. Performance-based seismic retrofit strategy for existing reinforced concrete frame systems using fiber-reinforced polymer composites. J Compos Constr. 2007;11:211-26.
  • 125. Niroomandi A, Maheri A, Maheri MR, Mahini SS. Seismic performance of ordinary RC frames retrofitted at joints by FRP sheets. Eng Struct. 2010;32:2326-36.
  • 126. Dalalbashi A, Eslami A, Ronagh HR. Plastic hinge relocation in RC joints as an alternative method of retrofitting using FRP. Compos Struct. 2012;94:2433-9.
  • 127. Wang C-L, Liu Y, Zheng X, Wu J. Experimental investigation of a precast concrete connection with all-steel bamboo-shaped energy dissipaters. Eng Struct. 2019;178:298-308.
  • 128. Bahrami S, Madhkhan M, Shirmohammadi F, Nazemi N. Behavior of two new moment resisting precast beam to column connections subjected to lateral loading. Eng Struct. 2017;132:808-21.
  • 129. Nzabonimpa J, Hong WK, Park SC. Experimental investigation of dry mechanical beam-column joints for precast concrete based frames. Struct Design Tall Spec Build. 2017;26:e1302.
  • 130. Senturk M, Pul S, Ilki A, Hajirasouliha I. Development of a monolithic-like precast beam-column moment connection: experimental and analytical investigation. Eng Struct. 2020;205:110057.
  • 131. Shufeng L, Qingning L, Hao Z, Haotian J, Lei Y, Weishan J. Experimental study of a fabricated confined concrete beamto-column connection with end-plates. Constr Build Mater. 2018;158:208-16.
  • 132. Xu L-H, Zhang G, Xiao S-J, Li Z-X. Development and experimental verification of damage controllable energy dissipation beam to column connection. Eng Struct. 2019;199:109660.
  • 133. Gao Q, Li J-H, Qiu Z-J, Hwang H-J. Cyclic loading test for interior precast SRC beam-column joints with and without slab. Eng Struct. 2019;182:1-12.
  • 134. Aninthaneni P, Dhakal R, Marshall J, Bothara J. Nonlinear cyclic behaviour of precast concrete frame sub-assemblies with “dry” end plate connection. Structures. London: Elsevier; 2018. p. 124-36.
  • 135. Dong B, Lu C, Pan J, Shan Q, Yin W. Mechanical behavior of a novel precast beam-to-column connection with U-shaped bars and engineered cementitious composites. Adv Struct Eng. 2018;21:1963-76.
  • 136. Xu L, Pan J, Leung C, Yin W. Shaking table tests on precast reinforced concrete and engineered cementitious composite/reinforced concrete composite frames. Adv Struct Eng. 2018;21:824-37.
  • 137. Gou S, Ding R, Fan J, Nie X, Zhang J. Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites. Constr Build Mater. 2018;192:643-56.
  • 138. Ngo TT, Pham TM, Hao H. Effects of steel fibres and prestress levels on behaviour of newly proposed exterior dry joints using SFRC and CFRP bolts. Eng Struct. 2020;205:110083.
  • 139. Deng M, Ma F, Song S, Lu H, Sun H. Seismic performance of interior precast concrete beam-column connections with highly ductile fiber-reinforced concrete in the critical cast-inplace regions. Eng Struct. 2020;210:110360.
  • 140. Ghayeb HH, Razak HA, Sulong NR, Mo KH, Abutaha F, Gordan M. Performance of mechanical steel bar splices using grouted couplers under uniaxial tension. J Build Eng. 2021;34:101892.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-194423d3-3618-434b-b0bf-a8910b4a49db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.