PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Formal Properties of Petri’s Cycloid Systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cycloids are particular Petri nets for modelling processes of actions or events. They belong to the fundaments of Petri’s general systems theory and have very different interpretations, ranging from Einstein’s relativity theory to elementary information processing gates. Despite their simple definitions, their properties are still not completely understood. This contribution provides for the first time a formal definition together with new results concerning their structure. Cycloids are proved to be live and safe. It is shown that the minimal length of a cycle is the length of a local basic circuit, possibly decreased by an integer multiple of the number of semi-active transitions. These results allow to find the defining parameters of a cycloid from the static properties of the net system. Similar results are obtained for degenerate cycloids.
Rocznik
Strony
85--121
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Informatics, University of Hamburg, Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany
Bibliografia
  • [1] Petri CA. Nets, Time and Space. Theoretical Computer Science, 1996. (153):3-48. doi:10.1016/0304-3975(95)00116-6.
  • [2] Petri CA, Valk R. On the Physical Basics of Information Flow - Results Obtained in Cooperation Konrad Zuse, 2008. URL http://uhh.de/inf-petri-xian08.
  • [3] Petri CA. Slides of the Lecture ”Systematics of Net Modelling”, Hamburg 2004, 2004. URL http://uhh.de/inf-petri-sysnetmod.
  • [4] Stehr MO. System Specification by Cyclic Causality Constraints. Technical Report 210, Department of Informatics, Univ. Hamburg, 1998.
  • [5] Petri CA. Collection of Handwritten Scripts on Cycloids, Lecture University of Hamburg, 1990/91.
  • [6] Fenske U. Petris Zykloide und Überlegungen zur Verallgemeinerung. Diploma Thesis, 2008.
  • [7] Langner P. Cycloids’ Characteristics. http://cycloids.adventas.de, 2013.
  • [8] Valk R. On the Structure of Cycloids Indroduced by Carl Adam Petri. In: Application and Theory of Petri Nets and Concurrency, volume 10877 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2018 pp. 294-314. doi:10.1007/978-3-319-91268-4_15.
  • [9] Smith E, Reisig W. The Semantics of a Net is a Net - An Exercise in General Net Theory. In: Voss K, Genrich J, Rozenberg G (eds.), Concurrency and Nets. Springer-Verlag, Berlin, 1987 pp. 461-479. doi:10.1007/978-3-642-72822-8_29.
  • [10] Kummer O. Axiomatic Systems in Concurrency Theory. Logos Verlag Berlin, 2001. ISBN-10:3897225972, 13:978-3897225978.
  • [11] Kummer O, Stehr MO. Petri’s Axioms of Concurrency - A Selection of Recent Results. In: Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1997 pp. 195-214. doi:10.1007/3-540-63139-9_37.
  • [12] Valk R. From Fundamental Laws in Physics to Coordination Principles, in Tutorial: Nets, Physics and Coordination, A tribute to the work of Carl Adam Petri and Anatol W. Holt, Milano 2013, 2013. URL http://uhh.de/inf-valk-tutorium-npc.
  • [13] Little JD, Graves SC. Little’s Law. In: Chhajed D, Lowe TJ (eds.), Building Intuition: Insights From Basic Operations Management Models and Principles, International Series in Operations Research and Management Science, chapter 5, pp. 81-100. Springer, Berlin, 2008. doi:10.1007/978-0-387-73699-0.
  • [14] Petri CA. On Technical Safety and Security. Petri Net Newsletter, 1989. 33:25-30. URL https://www.informatik.uni-augsburg.de/pnnl/.
  • [15] Petri CA, Yuan CY. On Technical Safety and Security (continued). Petri Net Newsletter, 1990. 35:8-15. URL https://www.informatik.uni-augsburg.de/pnnl/.
  • [16] Girault C, Valk R (eds.). Petri Nets for System Engineering - A Guide to Modelling, Verification and Applications, 585 pages. Springer, Berlin, 2003. doi:10.1007/978-3-662-05324-9.
  • [17] Genrich H, Lautenbach K. Synchronisationsgraphen. Acta Informatica, 1973. 2:143-161. doi:10.1007/BF00264027.
  • [18] Commoner F, Holt AW, Even S, Pnueli A. Marked Directed Graphs. Journal of Computer and System Sciences, 1971. 5:511-523. doi:10.1016/S0022-0000(71)80013-2.
  • [19] Desel J, Esparza J. Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1995. doi:10.1017/CBO9780511526558.
  • [20] Stehr MO. Characterizing Security in Synchronization Graphs. Petri Net Newsletter, 1999. 56:17-26. URL https://www.informatik.uni-augsburg.de/pnnl/.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1943c8c4-a126-461b-9e15-bb699eb8132d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.