PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unions of chainable continua with the fixed point property

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the fixed point property for continua that are unions of chainable continua. We answer Question 2 of our paper [Fund. Math. 231 (2013)] by showing the fixed point property is additive for chainable continua. We additionally show that (i) various finite unions of chainable continua have the fixed point property, and (ii) infinite unions of chainable continua that are 1-dimensional, upper semicontinuous clumps as defined by H. Cook have the fixed point property.
Rocznik
Strony
87--95
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Department of Mathematics & Statistics, California State University, Sacramento, Sacramento, CA 95819-6051, USA
autor
  • Department of Mathematics & Statistics, California State University, Sacramento, Sacramento, CA 95819-6051, USA
Bibliografia
  • [1] H. Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 529-548.
  • [2] H. Cook, Tree-likeness of dendroids and λ-dendroids, Fund. Math. 68 (1970), 19-22.
  • [3] H. Cook, Clumps of continua, Fund. Math. 86 (1974), 91-100.
  • [4] C. L. Hagopian and M. M. Marsh, Non-additivity of the fixed point property for tree-like continua, Fund. Math. 231 (2015), 113-137.
  • [5] O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173-174.
  • [6] W. T. Ingram, Tree-likeness of certain inverse limits with set-valued functions, Topology Proc. 42 (2013), 17-24.
  • [7] W. T. Ingram, One-dimensional inverse limits with set-valued functions, Topology Proc. 46 (2015), 243-253.
  • [8] W. Lopez, An example in the fixed point theory of polyhedra, Bull. Amer. Math. Soc. 73 (1967), 922-924.
  • [9] T. Maćkowiak, Indecomposable continua and the fixed point property, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 903-912.
  • [10] R. Mańka, Association and fixed points, Fund. Math. 91 (1976), 105-121.
  • [11] R. Mańka, On uniquely arcwise connected curves, Colloq. Math. 51 (1987), 227-238.
  • [12] R. Mańka, On the additivity of the fixed point property for 1-dimensional continua, Fund. Math. 136 (1990), 27-36.
  • [13] M. M. Marsh, Covering spaces, inverse limits, and induced coincidence producing mappings, Houston J. Math. 29 (2003), 983-992.
  • [14] R. L. Russo, Universal continua, Fund. Math. 105 (1979), 41-60.
  • [15] K. Sieklucki, On a class of plane acyclic continua with the fixed point property, Fund. Math. 63 (1968), 257-278.
  • [16] A. L. Yandl, On a question concerning fixed points, Amer. Math. Monthly 75 (1968), 152-156.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19434b62-58cd-403a-a33d-f1f02751a8d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.