PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Research on hybrid topology of single-switch ICPT for battery charging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
: In order to realize constant current and constant voltage charging for batteries by inductively coupled power transfer (ICPT) technology, a single-switch CL/LCL circuit is designed. The single-switch CL/LCL circuit is composed of a CL/LCL compensation network and single-switch inverter. The proposed circuit is compared with the traditional constant current and constant voltage circuit in the structure. The operating process of the single-switch CL/LCL circuit and the principle to realize a zero-voltage switch (ZVS) are analysed in detail in this paper. The voltage gain and current gain of the circuit are calculated, which demonstrates that the circuit is able to suppress higher harmonics strongly. By using Fourier decomposition, the voltage on the primary-side compensation capacitor can be obtained. After constructing the equivalent mutual inductance model of the circuit, the formulas and parameters are deduced and calculated. Finally, an experiment platform is built to verify the proposed circuit can realize constant current and constant voltage.
Rocznik
Strony
841--855
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wz.
Twórcy
  • Qingdao University China
  • Qingdao University China
  • Qingdao University China
autor
  • Qingdao University China
Bibliografia
  • [1] Prabhat C. G., Pradip K. S., Ankita G. et al., A new circuit topology using Z-source resonant inverter for high power contactless power transfer applications, Archives of Electrical Engineering, vol. 66, no. 4, pp. 843–856 (2017).
  • [2] Liu F., Yang Y., Ding Z. et al., A Multifrequency Superposition Methodology to Achieve High Efficiency and Targeted Power Distribution for a Multiload MCR WPT System, IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 9005–9016 (2018).
  • [3] Ma G., Jiang L., Chen Y. et al., Study on the impact of electric vehicle charging load on nodal voltage deviation, Archives of Electrical Engineering, vol. 66, no. 3, pp. 495–505 (2017).
  • [4] Zhang H. S., Xiao Y. C., Zhong C. Q., Modeling of Mutual Inductance Between Superconducting Pancake Coils Used in Wireless Power Transfer (WPT) Systems, IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–4 (2019).
  • [5] Dai X., Jiang J., Wu J., Charging Area Determining and Power Enhancement Method for Multiexcitation Unit Configuration of Wirelessly Dynamic Charging EV System, IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 4086–4096 (2019).
  • [6] Li S. Q., Li W. H., Deng J. et al., A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer, IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2261–2273 (2015).
  • [7] Kan T., Nguyen T., White J.C. et al., A New Integration Method for an Electric Vehicle Wireless Charging System Using LCC Compensation Topology: Analysis and Design, IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1638–1650 (2017).
  • [8] Qu X. H., Han H. D., Wong S. C. et al., Hybrid IPT Topologies With Constant Current or Constant Voltage Output for Battery Charging Applications, IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6329–6337 (2015).
  • [9] Liu G. J., Bai J. H., Cui Y. L. et al., Double-Sided LCL Compensation Alteration Based on MCR-WPT Charging System, Transactions of China Electrotechnical Society, vol. 34, no. 8, pp. 1569–1579 (2019).
  • [10] Zhang H., Wang H. M., Li N. et al., Analysis on Hybrid Compensation Topology Circuit for Wireless Charging of Electric Vehicles, Automation of Electric Power Systems, vol. 40, no. 16, pp. 371–75 (2016).
  • [11] Ji L., Wang L. F., Liao C. L. et al., Research and Design of Automatic Alteration between Constant Current Mode and Constant Voltage Mode at the Secondary Side Based on LCL Compensation Network in Wireless Power Tranfer Systems, Transactions of China Electrotechnical Society, vol. 33, sup. 1, pp. 38–44 (2018).
  • [12] Kawa A., Penczek A., Pirog S., DC-DC boost-flyback converter functioning as input stage for one phase low power grid-connected inverter, Archives of Electrical Engineering, vol. 63, no. 3, pp. 393–407 (2014).
  • [13] Liu S., Wang B., Design of quasi-resonant flyback secondary intrinsically safe power supply, Archives of Electrical Engineering, vol. 68, no. 1, pp. 5–13 (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19431c03-f6e4-446c-b0a6-a92b704bd8ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.