PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence hot plastic deformation on the structure and properties of carbon steel of the railway wheel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study is devoted to the explanation of the influence of hot plastic deformation on the properties of railway wheels. The shape of individual elements of the wheel provides for a different degree of hot compression, which determines the mechanism for the development of the recrystallization at austenite. With a decrease in the degree of the hot deformation, a certain proportion of grains with a low energy of linear stretching are formed in austenite. As a result, of the low mobility of such boundaries, the likelihood of preservation of part of the substructural state of the austenite increases, which should affect the formation of a colony of perlite during the cooling of the carbon steel. Against background preservation and a dependence of strength properties on the dispersion of the pearlite colony, the appearance in austenite of grain boundaries with a low energy of linear tension leads to a qualitative change in the plastic properties of railway wheel steel. The increase in plasticity of carbon steel with an increase in dispersion of the pearlite colony is due to a decrease in the effect of solid solution hardening and an increase in the role of the ferrite-cementite interface in the development processes of strain hardening carbon steel. The results obtained can be useful for improving the technology of manufacturing all-rolled railway wheels.
Rocznik
Tom
Strony
257--266
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Faculty of Transport Engineering, Ukrainian State University Science and Technology, Lazaryan 2 Street, 49010 Dnipro, Ukraine
  • Faculty of Transport Engineering, Ukrainian State University Science and Technology, Lazaryan 2 Street, 49010 Dnipro, Ukraine
  • Dnipro Lyceum of Railway Transport, Universalna 7 Street, 49024 Dnipro, Ukraine
  • Faculty of Mechanical Engineering, Karabuk University, Kılavuzlar Mahallesi 413/Sokak No: 7, 78050 Karabuk, Turkey
Bibliografia
  • 1.Бабич В.К., Ю.П. Гуль, И.Е. Долженков. 1972. Деформационное старение стали. Москва: Металлургия. [In Russian: Babich V.K., Yu. P. Gulj, I.E. Dolzhenkov. 1972. Deformation aging of steel. Moskow. Metallurgiya].
  • 2.Бабаченко О.І., Г.А. Кононенко. 2023. „Тріщиностійкість залізничних коліс”. Монографія, Київ, Україна: Наукова думка. [In Ukrainian: Babachenko A.I., G.A. Kononenko. 2023. “The cracking resistance of railway wheels”. Monograph, Kiїv, Ukraine: Naukova dumka]. DOI: https://doi.org/10.15407/978-966-00-1824-2.
  • 3.Brandon D.G. 1966. „The structure of high-angle grain boundaries Structure de joints de grains a grands angles”. Acta Metallurgica 14(11): 1479-1484. ISSN: 0001-6160. DOI: https://doi.org/10.1016/0001-6160(66)90168-4.
  • 4.Gao Guhui, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. 2022. „Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels”. Journal of Materials Science & Technology 108: 142-157. ISSN: 1941-1162. DOI: https://doi.org/10.1016/j.jmst.2021.08.060.
  • 5.Gensamer M., E.B. Pearsall, W.S. Pellini, J.R. Low. 1942. “The tensile properties of pearlite, bainite, and spheroidite”. Trans. Amer. Soc. Met. XXX: 983-1020.
  • 6.Gleiter H., В. Chalmers. 1972. High-angle grain boundaries. Progress in Materials Science. Oxford, New York, Toronto, Sydney, Braunschweig: Pergamon Press.
  • 7.Хесснер Ф., С. Хофман. 1982. “Миграция большеугловых границ зерен”. В: Рекристаллизация металлических материалов: 71-103. Под редакцией Ф. Хесснера. Москва: Металлургия. [In Russian: Haessner F., S. Hoffman. 1982. “Migration of high-angle grain boundaries”. In: Recrystallization of metallic materials: 71-103. Edited by F. Haessner. Moskow. Metallurgiya].
  • 8.Herring А.C. 1951. Physics of Powder Metallurgy. New York. McGraw-Hill Book Co.
  • 9.Hillert Mats. 1975. „Diffusion and interface control of reactions in alloys”. Metallurgical Transactions A 6: 5-19. DOI: https://doi.org/10.1007/BF02673664.
  • 10.Lee K.T., J.A. Szpunar. 1995. „The role of special grain boundaries during the grain growth in Fe-3%Si”. Canadian Metallurgical Quarterly 34 (3): 257-263. ISSN: 0008-4433. DOI: https://doi.org/10.1016/0008-4433(95)00011-L.
  • 11.Liu Man, Jun Wang, Qi Zhang, Haijiang Hu, Guang Xu. 2021. „Optimized Properties of a Quenching and Partitioning Steel by Quenching at Fine Martensite Start Temperature”. Metals and Materials International 27: 2473-2480. ISSN: 2005-4149. DOI: https://doi.org/10.1007/s12540-020-00726-5.
  • 12.Liu Miao, Yusong Fan, Xiaolu Gui, Jie Hu, Xi Wang, Guhui Gao. 2022. „Relationship between Microstructure and Properties of 1380 MPa Grade Bainitic Rail Steel Treated by Online Bainite-Based Quenching and Partitioning Concept”. Metals 12(2): 330. ISSN: 2075-4701. DOI: https://doi.org/10.3390/met12020330.
  • 13.Luo C.P., G.C. Weatherly. 1989. “The crystallography of heterogeneous nucleation in a Ni-45 wt% Cr alloy”. Acta Metallurgica 37(3): 791-801. ISSN: 0001-6160. DOI: https://doi.org/10.1016/0001-6160(89)90006-0.
  • 14.Masoumi Mohammad, Edwan Echeverr, André Tschiptschin, Hélio Goldenstein. 2019. „Improvement of wear resistance in a pearlitic rail steel via quenching and partitioning processing”. Scientific Reports 9(7454): 1-12. ISSN: 2045-2322 (online). DOI: https://doi.org/10.1038/s41598-019-43623-7.
  • 15.Murr L.E. 1975. Interfacial Phenomena in Metals and Alloys. New York. Addison-Wesley Publ. Company.
  • 16.Pereira Henrique Boschetti, Luiz Henrique Dias Alves, Andrei Bavaresco Rezende, Paulo Roberto Mei, Hélio Goldenstein. 2022. „Influence of the microstructure on the rolling contact fatigue of rail steel: Spheroidized pearlite and fully pearlitic microstructure analysis”. Wear 498-499: 204299. ISSN: 0043-1648. DOI: https://doi.org/10.1016/j.wear.2022.204299.
  • 17.Pickering F.B. 1978. Physical metallurgy and the design of steels. Applied science publishers LTD.
  • 18.Qiu Jiajia, Min Zhang, Zhunli Tan, Guhui Gao, Bingzhe Bai. 2019. „Research on the Microstructures and Mechanical Properties of Bainite/Martensite Rail Treated by the Controlled-Cooling Process”. Materials 12(19): 3061. ISSN: 1996-1944. DOI: https://doi.org/10.3390/ma12193061.
  • 19.Seo Jung-Won, Hyun-Moo Hur, Seok-Jin Kwon. 2022. „Effect of Mechanical Properties of Rail and Wheel on Wear and Rolling Contact Fatigue”. Metals 12(4): 630. ISSN: 2075-4701. DOI: https://doi.org/10.3390/met12040630.
  • 20.Sukhomlin G.D., A.V. Andreeva .1983. „Particular properties of Σ = 3n boundaries in F. C. C. polycrystals. I. Crystallographical parameters and grain boundary faceting during annealing”. Physica status solidi (a) 78: 333-341. ISSN: 1862-6319. https://doi.org/10.1002/pssa.2210780139.
  • 21.Cухомлин Г.Д. 2013. „Специальные границы в феррите низкоуглеродистых сталей”. Металлофиз. новейшие технол 35(9): 1237-1249. [In Russian: Sukhomlin G.D. 2013. „Special boundaries in ferrite of low-carbon steels”. Metallophysics and Advanced Technologies 35(9): 1237-1249]. ISSN: 2005-4149. DOI: https://doi.org/10.1007/s12540-020-00726-5.
  • 22.Standard test methods for determining average grain size1. 2004. E 112-96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-193ded68-ff45-4422-b33b-2f45a3ed6d0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.