Identyfikatory
Warianty tytułu
Nośność styków pomiędzy betonami układanymi w różnym czasie w świetle wyników badań eksperymentalnych i procedur projektowych
Języki publikacji
Abstrakty
The paper presents selected issues related to the load carrying capacity of joints between concretes cast at different times. The most important factors affecting the shear resistance, such as: surface roughness (profile), shear reinforcement ratio, concrete strength as well as the aggregate composition are discussed, including results of previous experimental studies conducted on push-off specimens and composite reinforced concrete beams. The differences in behaviour and shear resistance of contacts between ordinary concretes, lightweight aggregate concretes and recycled aggregate concretes are presented. Principles of interface design in the light of codes of practise: AASHTO-LRFD, ACI 318-19, EN 1992-1-1 and prEN 1992-1-1 were described. The theoretical predictions were compared with 184 results of experimental tests on push-off specimens. It has been found that most of the procedures allow for a safe estimation of the load carrying capacity of interfaces - with and without shear reinforcement. However, the obtained results were mostly conservative (depending on the considered design procedure, ratio of the experimental to theoretical load carrying capacity lies in range 1.51÷2.68). This may indicate that the description of shear transfer mechanism between concretes cast at different times is still imperfect and need to be improved.
W artykule przedstawiono wybrane zagadnienia związane z nośnością styków pomiędzy betonami układanymi w różnym czasie. Konieczność zapewnienia właściwego zespolenia pomiędzy “starym” i “nowym” betonem zachodzi nie tylko w przypadku konstrukcji nowo wznoszonych, w których stosuje się elementy prefabrykowane, lecz także w obiektach już istniejących, gdy zachodzi potrzeba wzmocnienia konstrukcji. Tematyka nośności styków pomiędzy betonami układanymi w różnym czasie stanowi przedmiot badań eksperymentalnych prowadzonych od lat 60. ubiegłego wieku. Za pierwszy model opisujący zachowanie styków uznaje się teorię shear-friction, przedstawioną przez Masta i opisaną szczegółowo przez Birkelanda i Birkelanda. Model ten stosowany jest do dnia dzisiejszego w procedurach obliczeniowych ACI 318 i AASHTO-LRFD, jednak badania eksperymentalne prowadzone na przestrzeni lat wykazały potrzebę rewizji przyjętych założeń, polegających m.in. na uwzględnieniu sił adhezji czy kompozycji stosu okruchowego.
Czasopismo
Rocznik
Tom
Strony
275--298
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
autor
- Lodz University of Technology, Department of Concrete Structures, Łódź, Poland
Bibliografia
- [1] AASHTO-LRFD Bridge Design Specifications, 2012.
- [2] ACI 318-19 ACI Standard Building Code Requirements for Structural Concrete (ACI 318-19) Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), American Concrete Institute, 2019.
- [3] S. Ahmad, P. Bhargava, A. Chourasia, “Shear transfer strength of uncracked interfaces: A simple analytical model”, Construction and Building Materials, 2018, vol. 192, pp. 366-380, DOI: 10.1016/j.conbuildmat.2018.10.094.
- [4] P.W. Birkeland, H.W. Birkeland, “Connections in precast concrete construction”, ACI Structural Journal Proceedings, 1966, vol. 63, no. 3, pp. 345-368.
- [5] CEN/TC 250/SC 2, prEN 1992-1-1:2020 Eurocode 2: Design of concrete structures - Part 1-1: General rules, rules for buildings, bridges and civil engineering structures, Brussels, 2020.
- [6] H. Costa, R.N.F. Carmo, E. Júlio, “Influence of normal stress and reinforcement ratio on the behavior of LWAC interfaces”, Construction and Building Materials, 2018, vol. 192, pp. 317-329, DOI: 10.1016/j.conbuildmat.2018.10.116.
- [7] EN 1992-1-1: Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardisation, Brussels, 2004.
- [8] Z. Fang, H. Jiang, A. Liu, J. Feng,Y. Li, “Shear-friction behaviour on smooth interface between high-strength and lightweight concrete”, Magazine of Concrete Research, 2020, vol. 72, no. 2, pp. 68-87, DOI: 10.1680/jmacr.17.00393.
- [9] fib Model Code 2010 - Final draft - vol. 2, 2012.
- [10] M. Gohnert, “Horizontal shear transfer across a roughened surface”, Cement and Concrete Composites, 2003, vol. 25, no. 3, pp. 379-385, DOI: 10.1016/S0958-9465(02)00050-1.
- [11] M. Gołdyn, Ł. Krawczyk, T. Urban, “Przyczynek do rozważań na temat nośności elementów z uwagi na przecinanie betonu”, Journal of Civil Engineering, Environment and Architecture, 2017, vol. 64, no. 3, pp. 293-305, DOI: 10.7862/rb.2017.123.
- [12] M. Gołdyn, T. Urban, “Lekkie betony kruszywowe w konstrukcjach budowlanych i inżynierskich”, Materiały Budowlane, 2019, no. 12, pp. 16-19 (in Polish).
- [13] M. Gołdyn, T. Urban, “Experimental Investigations on Interface between Ordinary and Lightweight Aggregate Concretes Cast at Different Times”, Materials, 2021, vol. 14, no. 7, DOI: 10.3390/ma14071664.
- [14] A. Halicka, Studium stanu naprężeń i odkształceń w płaszczyźnie styku i strefie przypodporowej elementów zespolonych z udziałem betonów skurczowych i ekspansywnych, Lublin: Wydawnictwo Politechniki Lubelskiej, 2007.
- [15] A. Halicka, “Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams”, Construction and Building Materials, 2011, vol. 25, no. 10, pp. 4072-4078, DOI: 10.1016/j.conbuildmat.2011.04.045.
- [16] A. Halicka, Ł. Jabłoński, “Shear failure mechanism of composite concrete T-shaped beams”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2016, vol. 169, no. 1, pp. 67-75, DOI: 10.1680/stbu.14.00127.
- [17] K.A. Harries, G. Zeno, B. Shahrooz, D.Wang, X. Lu, “Toward an Improved Understanding of Shear-Friction Behavior”, ACI Structural Journal, 2012, vol. 109, no. 6, pp. 835-844.
- [18] B.R. Hermansen, J. Cowan, “Modified shear-friction theory for bracket design”, ACI Journal Proceedings, 1974, vol. 71, no. 8, pp. 55-60.
- [19] A.J. Hofbeck, O.I. Ibrahim, A.H. Mattock, “Shear Transfer in Reinforced Concrete”, ACI Journal Proceedings, 1969, vol. 66, no. 2.
- [20] T.T.C. Hsu, S.T. Mau, B. Chen, “Theory of Shear Transfer Strength of Reinforced Concrete”, ACI Structural Journal, 1987, vol. 84, no. 2, pp. 149-160.
- [21] Ł. Jabłoński, A. Halicka, “Influence of the interface reinforcement on static performance of concrete composite T-shaped beams”, Budownictwo i Architektura, 2020, vol. 19, no. 3, pp. 063-076, DOI: 10.35784/budarch.2170.
- [22] H. Jiang, Z. Fang, A. Liu, Y. Li, J. Feng, “Interface shear behavior between high-strength precast girders and lightweight cast-in-place slabs”, Construction and Building Materials, 2016, vol. 128, pp. 449-460, DOI: 10.1016/j.conbuildmat.2016.10.088.
- [23] E.N.B.S. Júlio, D. Dias-da-Costa, F.A.B. Branco, J.M.V. Alfaiate, “Accuracy of design code expressions for estimating longitudinal shear strength of strengthening concrete overlays”, Engineering Structures, 2010, vol. 32, no. 8, pp. 2387-2393, DOI: 10.1016/j.engstruct.2010.04.013.
- [24] L. Kahn, A.D. Mitchell, “Shear Friction Test With High-Strength Concrete”, ACI Structural Journal, 2002, vol. 99, no. 1, pp. 98-103.
- [25] L.B. Kriz, C.H. Raths, “Connections in precast concrete structures: strength of corbels”, PCI Journal, 1965, vol. 10, no. 1, pp. 16-61.
- [26] R.E. Loov, A.K. Patnaik, “Horizontal Shear Strength of Composite Concrete Beams With a Rough Interface”, PCI Journal, 1994, vol. 39, no. 1, pp. 48-69.
- [27] R. Mast, “Auxiliary Reinforcement in Concrete Connections”, Journal of the Structural Division, 1968, vol. 94, no. 6, pp. 1485-1504
- [28] A.H. Mattock, “Shear Transfer in Concrete Having Reinforcement at an Angle to the Shear Plane”, American Concrete Institute, ACI Special Publication, 1974, vol. 42, pp. 17-42.
- [29] A.H. Mattock, “Shear Transfer Under Monotonic Loading, Across an Interface Between Concretes Cast at Different Times”, Department of Civil Engineering report SM 76-3. Seattle, University of Washington. 1976.
- [30] A.H. Mattock, “Reader comments of paper Influence of concrete strength and load history on the shear friction capacity of concrete members”, PCI Journal, 1988, vol. 33, no. 1, pp. 165-166.
- [31] A.H. Mattock, “Shear friction and high-strength concrete”, ACI Structural Journal, 2001, vol. 98, no. 1, pp. 50-59.
- [32] A.H. Mattock, W.K. Li, T.C.Wang, “Shear transfer in lightweight reinforced concrete”, PCI Journal, 1976, vol. 21, no. 1, pp. 20-39.
- [33] A.H. Mattock and Hawkins, N. M., “Shear Transfer in Reinforced Concrete-Recent Research”, PCI Journal, 1972, vol. 17, no. 2, pp. 55-75.
- [34] T. Mishima, A. Suzuki, Y. Shinoda, K. Maekawa, “Nonelastic behavior of axial reinforcement subjected to axial and slip deformation at the crack surface”, ACI Structural Journal, 1995, vol. 92, no. 3, pp. 380-385.
- [35] M.E. Mohamad, I.S. Ibrahim, R. Abdullah, A.B. Abd. Rahman, A.B.H. Kueh, J. Usman, “Friction and cohesion coefficients of composite concrete-to-concrete bond”, Cement and Concrete Composites, vol. 56, pp. 1-14, DOI: 10.1016/j.cemconcomp.2014.10.003.
- [36] C.G. Papanicolaou, T.C. Triantafillou, “Shear transfer capacity along pumice aggregate concrete and high-performance concrete interfaces”, Materials and Structures, 2002, vol. 34, pp. 237-245, DOI: 10.1007/BF02533085.
- [37] A.K. Patnaik, “Behavior of Composite Concrete Beams with Smooth Interface”, Journal of Structural Engineering, 2001, vol. 127, no. 4, pp. 359-366, DOI: 10.1061/(ASCE)0733-9445(2001)127:4(359).
- [38] K. Rahal, “Mechanical properties of concrete with recycled coarse aggregate”, Building and Environment, 2007, vol. 42, no. 1, pp. 407-415, DOI: 10.1016/j.buildenv.2005.07.033.
- [39] K.N. Rahal, A.L. Al-Khaleefi, “Shear-friction behavior of recycled and natural aggregate concrete-an experimental investigation”, ACI Structural Journal, 2015, vol. 112, no. 6, pp. 725-734, DOI: 10.14359/51687748.
- [40] N. Randl, “Zur Frage der Mindestbewehrung bei Aufbeton-Verbundfugen”, Beton- und Stahlbetonbau, 2010, vol. 105, no. 9 pp. 608-611.
- [41] N. Randl, M. Wicke, “Schubübertragung zwischen Alt- und Neubeton. Experimentelle Untersuchungen, theoretischer Hintergrund und Bemessungsansatz”, Beton-und Stahlbetonbau, 2000, vol. 95, no. 8, pp. 461-473, DOI: 10.1002/best.200000870.
- [42] P.M.D. Santos, E.N.B.S. Júlio, “A state-of-the-art review on shear-friction”, Engineering Structures, 2012, vol. 45, pp. 435-448, DOI: 10.1016/j.engstruct.2012.06.036.
- [43] P.M.D. Santos, E.N.B.S. Júlio, “Interface shear transfer on composite concrete members”, ACI Structural Journal, 2014, vol. 111, no. 1, pp. 113-121, DOI: 10.14359/51686543.
- [44] D.M. Shaw, L.H. Sneed, “Interface shear transfer of lightweight-aggregate concretes cast at different times”, PCI Journal, 2014, vol. 59, no. 3, pp. 130-144, DOI: 10.15554/pcij.06012014.130.144.
- [45] L.H. Sneed, K. Krc, S. Wermager, D. Meinheit, “Interface shear transfer of lightweight-aggregate concretes with different lightweight aggregates”, PCI Journal, 2016, vol. 61, no. 2, pp. 38-55, DOI: 10.15554/pcij.03012016.38.55.
- [46] T. Urban, M. Gołdyn, Ł. Krawczyk, “O przyczynach problemów z żelbetowym stropem opartym na konstrukcji stalowej”, Inżynieria i Budownictwo, 2017, vol. 73, no. 12, pp. 644-647.
- [47] J. Walraven, H.W. Reinhardt, “Theory and Experiments on the Mechanical Behaviour of Cracks in Plain and Reinforced Concrete Subjected to Shear Loading”, HERON, 1981, vol. 26.
- [48] J. Xiao, C. Sun, D.A. Lange, “Effect of joint interface conditions on shear transfer behavior of recycled aggregate concrete”, Construction and Building Materials, 2016, vol. 105, pp. 343-355, DOI: 10.1016/ j.conbuildmat.2015.12.015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-193d8803-136f-424a-9859-f01431fd54f6