PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbiological Stability of Bio-Based Building Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to study the microbiological stability of bio-based composite building materials, which are made using organic-rich lake sediments (further – sapropel) with lime and magnesium cement as binders and hemp shives as filler. The microbial stability properties of the obtained composite materials were investigated and compared to similar composites. Because of their high organic content, these materials are prone to biodegradation; therefore, they were coated with ALINA LIFE TM organoclay coating, which helps to extend the product life, reducing the rate of biodegradation compared to the biocides used in industry. The effect of the coating on the resistance to decay by the Aspergillus versicolor, Penicillium chrysogenum, Alternaria alternata, Cladosporium herbarum, Chaetomium sp. and Trichoderma asperellum fungi was investigated under different conditions: relative humidity modes of 75% and 99% at 20°C for 45 days and four months. The results indicated that the composites made of sapropel and lime have similar microbial stability properties as lime and magnesium cement binder composite materials. ALINA LIFE TM organoclay coating showed advanced resistance to biodegradation; sapropel-lime composites have shown several good properties that make them suitable to be considered for use in the construction material industry.
Rocznik
Strony
296--313
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Science, University of Latvia, Raina blvd 19, Riga, LV-1586, Latvia
autor
  • Institute of Materials and Structures, Riga Technical University, Kalku 1, Riga, LV 1658, Latvia
  • Department of Microbiology and Biotechnology, University of Latvia, Raina blvd 19, Riga, LV-1586, Latvia
  • LLC ALINA, Pulkveza Brieza 8-1, Riga, LV-1010, Latvia
  • Department of Environmental Science, University of Latvia, Raina blvd 19, Riga, LV-1586, Latvia
  • Department of Environmental Science, University of Latvia, Raina blvd 19, Riga, LV-1586, Latvia
Bibliografia
  • 1. Ali, E. M. M., Almagboul, A. Z. I., Khogali, S. M. E., & Gergeir, U. M. A. (2012). Antimicrobial Activity of Cannabis L. Chinese Medicine, 03(01), 61–64. https://doi.org/10.4236/cm.2012.31010
  • 2. Apine, I., Orola, L., & Jakovics, A. (2015). Effect of Building Envelope Materials on Indoor Air Quality in Low Energy Test Houses. International Journal of Environmental Science and Development, 6(12), 952–957. https://doi.org/10.7763/ijesd.2015.v6.728
  • 3. Balčiūnas, G., Žvironaitė, J., Vėjelis, S., Jagniatinskis, A., & Gaidučis, S. (2016). Ecological, thermal and acoustical insulating composite from hemp shives and sapropel binder. Industrial Crops and Products, 91, 286–294. https://doi.org/10.1016/j.indcrop.2016.06.034
  • 4. Bech-Andersen, J. (2004). Indoor Climate and Moulds. Holte: Hussvamp Laboratoriet Publishers.
  • 5. Commision Regulation (EU) 2018/1480. (2018). Official Journal of the European Union (Vol. 251).
  • 6. Dean, T., & Doris, B. (2014). Microbial Resistant Test Method Development. NC: United States Environmental Protection Agency (EPA).
  • 7. Ding, Z. G., Ding, J. H., Zhao, J. Y., Chunyu, W. X., Li, M. G., Gu, S. J., … Wen, M. L. (2018). A new phenylspirodrimane dimer from the fungus Stachybotrys chartarum. Fitoterapia, 125(October 2017), 94–97. https://doi.org/10.1016/j.fitote.2017.12.022
  • 8. Falkiewicz-Dulik, M., Janda, K., & Wypych, G. (2015). Biodegradation, Biodeterioration, and Biostabilization of Industrial Products. Handbook of Material Biodegradation, Biodeterioration, and Biostablization, 99–132. https://doi.org/10.1016/b978–1-895198–87–4.50008–6
  • 9. Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Carioca, O. B., … Ferreira, B. S. (2015). Biowaste biorefinery in Europe: Opportunities and research & development needs. New Biotechnology, 32(1), 100–108. https://doi.org/10.1016/j.nbt.2013.11.003
  • 10. Hegedűs, M., Tóth-Bodrogi, E., Németh, S., Somlai, J., & Kovács, T. (2017). Radiological investigation of phosphate fertilizers: Leaching studies. Journal of Environmental Radioactivity, 173, 34–43. https://doi.org/10.1016/j.jenvrad.2016.10.006
  • 11. Hossain, M. A., Ahmed, M. S., & Ghannoum, M. A. (2004). Attributes of Stachybotrys chartarum and its association with human disease. Journal of Allergy and Clinical Immunology, 113(2), 200–208. https://doi.org/10.1016/j.jaci.2003.12.018
  • 12. Jia, L., Zhao, F., Guo, J., & Yao, K. (2019). Properties and Reaction Mechanisms of Magnesium Phosphate Cement Mixed with Ferroaluminate Cement. Materials (Basel, Switzerland), 12(16), 2561. https://doi.org/10.3390/ma12162561
  • 13. Johansson, P. (2014). Determination of the critical moisture level for mould growth on building materials. Report TVBH; 1020 (2014) (Vol. 1020). Retrieved from https://lup.lub.lu.se/search/publication/4406856
  • 14. Johansson, P., Ekstrand-Tobin, A., & Bok, G. (2014). An innovative test method for evaluating the critical moisture level for mould growth on building materials. Building and Environment, 81, 404–409. https://doi.org/10.1016/j.buildenv.2014.07.002
  • 15. Klamer, M., Morsing, E., & Husemoen, T. (2004). Fungal growth on different insulation materials exposed to different moisture regimes. International Biodeterioration and Biodegradation, 54(4), 277–282. https://doi.org/10.1016/j.ibiod.2004.03.016
  • 16. Kostjukova, S., Karasa, J., Kostjukovs, K., Kostjukovs, J., & Štēbelis, D. (2017). Environmental protection for buildings [Umweltschutz für Gebäude]. Farbe Und Lack, 123(8), 50–54.
  • 17. Kurzo, B., Hajdukiewicz, O., & Krasnoberskaya, O. (2004). Relationships of sapropel formation in lakemire complexes of Belarus. Limnological Review, 4, 125–132.
  • 18. Laborel-Préneron, A., Ouédraogo, K., Simons, A., Labat, M., Bertron, A., Magniont, C., … Aubert, J. E. (2018). Laboratory test to assess sensitivity of bio-based earth materials to fungal growth. Building and Environment, 142(February), 11–21. https://doi.org/10.1016/j.buildenv.2018.06.003
  • 19. Obuka, V., Šinka, M., Kļaviņš, M., Stankeviča, K., & Korjakins, A. (2015). Sapropel as a binder: Properties and application possibilities for composite materials. IOP Conference Series: Materials Science and Engineering, 96(1). https://doi.org/10.1088/1757–899X/96/1/012026
  • 20. Obuka, V, Muter, O., Sinka, M., & Klavins, M. (2019). Biodegradation studies of sapropel-based composite materials. IOP Conf. Series: Materials Science and Engineering. https://doi.org/10.1088/1757–899X/660/1/012073
  • 21. Obuka, V., Sinka, M., Nikolajeva, V., Kostjukova, S., Lazdina, L., & Klavins, M. (2017). Sapropel and lime as binders for development of composite materials. 25th European Biomass Conference and Exhibition, (June), 1285–1291. https://doi.org/10.5071/25thEUBCE2017–3BV.3.35
  • 22. Paijens, C., Bressy, A., Frère, B., & Moilleron, R. (2020). Correction to: biocide emissions from building materials during wet weather: identification of substances, mechanism of release and transfer to the aquatic environment (Environmental Science and Pollution Research, (2020), 27, 4, (3768–3791), 10.1007/s113. Environmental Science and Pollution Research, 27(4), 3792–3793. https://doi.org/10.1007/s11356–019–07000–1
  • 23. Shea, A., Lawrence, M., & Walker, P. (2012). Hygrothermal performance of an experimental hemp – lime building. Construction and Building Materials, 36, 270–275. https://doi.org/10.1016/j.conbuildmat.2012.04.123
  • 24. Shen, N., Cui, Y., Xu, W., Zhao, X., & Yang, L. (2017). Impact of phosphorus and potassium fertilizers on growth and anthraquinone content in Rheum tanguticum Maxim. ex Balf. Industrial Crops and Products, 107(March), 312–319. https://doi.org/10.1016/j.indcrop.2017.05.044
  • 25. Sinka, M., Sahmenko, G., Korjakins, A., Radina, L., & Bajare, D. (2015). Hemp thermal insulation concrete with alternative binders, analysis of their thermal and mechanical properties. IOP Conference Series: Materials Science and Engineering, 96(1). https://doi.org/10.1088/1757–899X/96/1/012029
  • 26. Sinka, M., Van den Heede, P., De Belie, N., Bajare, D., Sahmenko, G., & Korjakins, A. (2018). Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resources, Conservation and Recycling, 133(November 2017), 288–299. https://doi.org/10.1016/j.resconrec.2018.02.024
  • 27. Sinka, Maris, Bajare, D., Gendelis, S., & Jakovics, A. (2018). In-situ measurements of hemp-lime insulation materials for energy efficiency improvement. Energy Procedia, 147, 242–248. https://doi.org/10.1016/j.egypro.2018.07.088
  • 28. Stefanowski, B. K., Curling, S. F., & Ormondroyd, G. A. (2017). A rapid screening method to determine the susceptibility of bio-based construction and insulation products to mould growth. International Biodeterioration and Biodegradation, 116, 124–132. https://doi.org/10.1016/j.ibiod.2016.10.025
  • 29. Thor. (2020). Biocides – Construction chemicals and Concrete admixtures. Retrieved from https://www.thor.com/biocidesconstructionandconcrete.html
  • 30. Vance, P. H., Schaeffer, F., Terry, P., Trevino, E., & Weissfeld, A. S. (2016). Mold Causes and Effects “in a Material World.” Clinical Microbiology Newsletter, 38(14), 111–116. https://doi.org/10.1016/j.clinmicnews.2016.06.004
  • 31. Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A review of indoor microbial growth across building materials and sampling and analysis methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-193bf050-563e-43bb-ac62-4897ad4987b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.