PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nanoscale beam model containing defect under the piezoelectricity considering the surface effects and flexoelectricity is established on the framework of Euler-Bernoulli theory. The governing equations of motion and related boundary conditions are derived by using Hamilton’s principle. The imperfect nanobeam is modeled by dividing the beam into two separate parts that are connected by a rotational and a longitude spring at the defect location. Analytical results on the free vibration response of the imperfect piezoelectric nanobeam exhibit that the flexoelectricity and the surface effects are sensitive to the boundary conditions, defect position, and geometry of the nanobeam. Numerical results are provided to predict the mechanical behavior of a weakened piezoelectric nanobeam considering the flexoelectric and surface effects. It is also revealed that the voltage, defect severity, and piezoelectric material have a critical role on the resonance frequency. The work is envisaged to underline the influence of surface effects and flexoelectricity on the free vibration of a cracked piezoelectric nanobeam for diverse boundary conditions. It should be mentioned, despite our R. Sourkiprevious works, an important class of piezoelectric materials used nowadays and called piezoelectric ceramics is considered in the current study.
Rocznik
Strony
417--437
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran
  • Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran
autor
  • School of Engineering, The University of British Columbia, Kelowna, BC, V1V 1V7 Canada
autor
  • Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran
Bibliografia
  • [1] S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertnees, and N.A. Sanford. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91(20):203117, 2007. doi: 10.1063/1.2815747.
  • [2] W.S. Su, Y.F. Chen, C.L. Hsiao, and L.W. Tu. Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters, 90(6):063110, 2007. doi: 10.1063/1.2472539.
  • [3] B. Kumar and S.-W. Kim. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342–355, 2012. doi: 10.1016/j.nanoen.2012.02.001.
  • [4] Z.L. Wang and J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771):242–246, 2006. doi: 10.1126/science.1124005.
  • [5] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L.Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12):2768–2772, 2006. doi: 10.1021/nl061802g.
  • [6] S.C. Lao, Q. Kuang, Z.L. Wang, M.C. Park, and Y. Deng. Polymer functionalized piezoelectricFET as humidity/chemical nanosensors. Applied Physics Letters, 90(26): 262107, 2007. doi: 10.1063/1.2748097.
  • [7] A. Chaipanich. Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites. Current Applied Physics, 7(5):574–577, 2007. doi: 10.1016/j.cap.2006.11.036.
  • [8] H. Farokhi, A.K. Misra, and M.P. Païdoussis. A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dynamics, 88(2):1187–1211, 2017. doi: 10.1007/s11071-016-3304-1.
  • [9] Z. Zhang, Z. Yan, and L. Jiang. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics, 116(1): 014307, 2014. doi: 10.1063/1.4886315.
  • [10] X. Liang, S. Hu, and S. Shen. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23(3):035020, 2014. doi: 10.1088/0964-1726/23/3/035020.
  • [11] Z. Yan. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Materials and Structures, 25(3): 035017, 2016. doi: 10.1088/0964-1726/25/3/035017.
  • [12] T.D. Nguyen, S. Mao, Y. Yeh , P.K. Purohit, and M.C. McAlpine. Nanoscale flexoelectricity. Advanced Materials, 25(7):946–974, 2013. doi: 10.1002/adma.201203852.
  • [13] L. Qi, S. Zhou, and A. Li. Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect. Composite Structures, 135:167–175, 2016. doi: 10.1016/j.compstruct.2015.09.020.
  • [14] R. Zhang, X. Liang, and S. Shen. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51(5):1181–1188, 2016. doi: 10.1007/s11012-015-0290-1.
  • [15] Z. Yan and L.Y. Jiang. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. Journal of Applied Physics. 113(19):194102, 2013. doi: 10.1063/1.4804949.
  • [16] Z. Zhang. Size-dependent Electroelastic Properties of Piezoelectric Nanoplates. Master Thesis, The University of Western Ontario, Canada, 2014.
  • [17] X. Liang, S.Hu, and S. Shen. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24(10):105012, 2015. doi: 10.1088/0964-1726/24/10/105012.
  • [18] Y. Tadi Beni. Size-dependent analysis of piezoelectric nanobeams including electromechanical coupling. Mechanics Research Communications, 75: 67–80, 2016. doi: 10.1016/j.mechrescom.2016.05.011.
  • [19] R. Sourki and S.A.H. Hoseini. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(4):413, 2016. doi: 10.1007/s00339-016-9961-6.
  • [20] R. Sourki and S.A. Hosseini. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. The European Physical Journal Plus, 132(4):184, 2017. doi: 10.1140/epjp/i2017-11458-0.
  • [21] S.J. Behrouz, O. Rahmani, and S.A. Hosseini. On nonlinear forced vibration of nano cantileverbased biosensor via couple stress theory. Mechanical Systems and Signal Processing, 128: 19–36, 2019. doi: 10.1016/j.ymssp.2019.03.020.
  • [22] B.A. Hamidi, S.A.H. Hosseini, R. Hassannejad, and F. Khosravi. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, 2019. doi: 10.1080/01495739.2019.1666694.
  • [23] S.A Hosseini and O. Rahmani. Modeling the size effect on the mechanical behavior of functionally graded curved micro/nanobeam. Thermal Science and Engineering, 1(2):1–20, 2018. doi: 10.24294/tse.v1i2.400.
  • [24] O. Rahmani, M. Shokrnia, H. Golmohammadi, and S.A.H. Hosseini. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. The European Physical Journal Plus, 133(2):42, 2018. doi: 10.1140/epjp/i2018-11868-4.
  • [25] M. Ghadiri, S. Hosseini, M. Karami, and M. Namvar. In-plane and out of plane free vibration of U-shaped AFM probes based on the nonlocal elasticity. Journal of Solid Mechanics Vol, 10(2):285–299, 2018.
  • [26] S. Hosseini and O. Rahmani. Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construction Research, 2(2):1–17, 2018.
  • [27] M. Namvar, E. Rezaei, S.A. Hosseini, and M. Ghadiri. Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. The European Physical Journal Plus, 132(6): 247, 2017. doi: 10.1140/epjp/i2017-11518-5.
  • [28] V. Refaeinejad, O. Rahmani, and S.A.H. Hosseini. Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures. Mechanics of Advanced Materials and Structures, 24(13):1116–1123, 2017. doi: 10.1080/15376494.2016.1227496.
  • [29] M. Zarepour, S.A.H. Hosseini, and A.H. Akbarzadeh. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Applied Mathematical Modelling, 69:563–582, 2019. doi: 10.1016/j.apm.2019.01.001.
  • [30] C. Zhang, J. Zhu, W. Chen, and Ch. Zhang. Two-dimensional theory of piezoelectric shells considering surface effect. European Journal of Mechanics – A/Solids, 43:109–117, 2014. doi: 10.1016/j.euromechsol.2013.09.007.
  • [31] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. doi: 10.1063/1.4897367.
  • [32] Z. Yan and L. Jiang. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. Journal of Physics D: Applied Physics, 45(25):255401, 2012. doi: 10.1088/0022-3727/45/25/255401.
  • [33] G.Y. Huang and S.W. Yu. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi b, 243(4):R22-R24, 2006. doi: 10.1002/pssb.200541521.
  • [34] Y.S. Li and E. Pan. Bending of a sinusoidal piezoelectric nanoplate with surface effect. Composite Structures, 136:45–55, 2016. doi: 10.1016/j.compstruct.2015.09.047.
  • [35] M.S. Chiu. and T. Chen. Effects of high-order surface stress on static bending behavior of nanowires. Physica E: Low-dimensional Systems and Nanostructures, 44(3):714–718, 2011. doi: 10.1016/j.physe.2011.11.016.
  • [36] A.H. Hosseini, O. Rahmani, M. Nikmehr, I.F. Golpayegani. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14(10):1019–1025, 2016. doi: 10.1166/sl.2016.3575.
  • [37] O. Rahmani, S.A.H. Hosseini, M.H.N. Moghaddam, and I.F. Golpayegani. Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study. International Journal of Applied Mechanics, 07(03):1550036, 2015. doi: 10.1142/S1758825115500362.
  • [38] J. Xiao, Y. Xu, and F. Zhang. A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 96(5):633–641, 2016. doi: 10.1002/zamm.201400232.
  • [39] K.F. Wang, and B.L. Wang. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics – A/Solids, 56:12–18, 2016. doi: 10.1016/j.euromechsol.2015.10.002.
  • [40] H.S. Nan and B.L. Wang. Effect of crack face residual surface stress on nanoscale fracture of piezoelectric materials. Engineering Fracture Mechanics, 110:68–80, 2013. doi: 10.1016/j.engfracmech.2013.08.002.
  • [41] S. Shen and S. Hu. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58(5):665–677, 2010. doi: 10.1016/j.jmps.2010.03.001.
  • [42] M. E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4):291–323, 1975. doi: 10.1007/BF00261375.
  • [43] J. Zhang, C. Wang, and S. Adhikari. Surface effect on the buckling of piezoelectric nanofilms. Journal of Physics D: Applied Physics, 45(28):285301, 2012. doi: 10.1088/0022- 3727/45/28/285301.
  • [44] A. Abdollahi, C. Peco, D. Millán, M. Arroyo, and I. Arias. Computational evaluation of the flexoelectric effect in dielectric solids. Journal of Applied Physics, 116(9):093502, 2014. doi: 10.1063/1.4893974.
  • [45] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. doi: 10.1063/1.4897367.
  • [46] T. Chen, M.S. Chiu, and C.N. Weng. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7):074308, 2006. doi: 10.1063/1.2356094.
  • [47] Z. Yan and L. Jiang. Influence of surface effects and flexoelectricity on vibration of piezoelectric nanobeams. 13th International Conference on Fracture, Beijing, China, 16–21 June, 2013.
  • [48] X. Liang, S. Hu, and S. Shen. A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, vol. 111:317–323, 2014. doi: 10.1016/j.compstruct.2014.01.019.
  • [49] Z. Yan and L.Y. Jiang. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24):245703, 2011. doi: 10.1088/0957-4484/22/24/245703.
  • [50] J. Loya, J. López-Puente, R. Zaera, and J. Fernández-Sáez. Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of Applied Physics, 10(4):044309, 2009. doi: 10.1063/1.3068370.
  • [51] M. Akbarzadeh Khorshidi and M. Shariati. Investigation of flexibility constants for a multispring model: a solution for buckling of cracked micro/nanobeams. Journal of Theoretical and Applied Mechanics, vol. 57(1):49–58, 2019.
  • [52] L.L. Zhang, J.X. Liu, X.Q. Fang, and G.Q. Nie. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of Mechanics – A/Solids, 46:22–29, 2014. doi: 10.1016/j.euromechsol.2014.01.005.
  • [53] Y.M. Yue, K.Y. Xu, and T. Chen. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composite Structures, 136:278–286, 2016. doi: 10.1016/j.compstruct.2015.09.046.
  • [54] J.A. Loya, J. Aranda-Ruiz, and J. Fernández-Sáez. Torsion of cracked nanorods using a nonlocal elasticity model. Journal of Physics D: Applied Physics, 47(11):115304, 2014. doi: 10.1088/0022-3727/47/11/115304.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-193b014a-506c-408e-afed-a0ea924d9819
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.