PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasible brittleness evaluation method and suggestion for brittleness reduction of cementitious materials based on stress–strain curve

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a brittleness evaluation index B5 and brittleness–plasticity classification standard for cementitious materials were established, and a suggestion for brittleness reduction was proposed. The results showed that B5 established based on the principle of energy conversion can effectively characterize the variation in the brittleness of cementitious materials with the confining pressure, and the brittleness order of different cementitious materials. Based on the established brittleness–plasticity classification standard, the ranges of B5 corresponding to the weak, high and ideal brittleness are [0.3, 0.6), [0.6, 1) and 1, respectively; and those corresponding to the weak, high and ideal plasticity are [0.1, 0.3), (0, 0.1) and 0, respectively. Finally, a suggestion for brittleness reduction using prismatic aggregates and hybrid nanofibers, flexible and rigid fibers of different sizes was proposed, and the corresponding design process of cementitious materials with weak brittleness was given. The research results in this study provide a basis for the brittleness evaluation of cementitious materials and the design of cementitious materials with weak brittleness.
Rocznik
Strony
art. no. e209, 2022
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
  • State Key Laboratory of Green Building in Western China, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
autor
  • School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
  • State Key Laboratory of Green Building in Western China, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
autor
  • State Key Laboratory of Green Building in Western China, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
Bibliografia
  • [1] Zou C, Cheng Y, Li J. Strain rate and size effects on the brittleness indexes of Carrara marble. Int J Rock Mech Min. 2021;146:104860.
  • [2] Morley A. Strength of materials, Longmans. New York: Green and Co.; 1913.
  • [3] Hetényi M. Handbook of experimental stress analysis. New York: Wiley; 1950.
  • [4] R.L. Bates, J.A. Jackson, Dictionary of geological terms, 3 rd ed, American Geological Institute, Alexandria, 1984.
  • [5] Meng F, Wong LNY, Zhou H. Rock brittleness indices and their applications to different fields of rock engineering: a review. J Rock Mech Geotech. 2021;13:221–47.
  • [6] Yang SQ, Yin PF, Ranjith PG. Experimental study on mechanical behavior and brittleness characteristics of Longmaxi formation shale in Changning, Sichuan Basin, China. Rock Mech Rock Eng. 2020;53:2461–83.
  • [7] Li N, Zou Y, Zhang S, Ma X, Zhu X, Li S, Cao T. Rock brittleness evaluation based on energy dissipation under triaxial compression. J Pet Sci Eng. 2019;183:106349.
  • [8] Beygi MHA, Kazemi MT, Nikbin IM, Amiri JV, Rabbanifar S, Rahmani E. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete. Cem Concr Res. 2014;66:75–90.
  • [9] Zhang B, Bicanic N, Pearce CJ, Phillips DV. Relationship between brittleness and moisture loss of concrete exposed to high temperatures. Cem Concr Res. 2002;32(3):363–71.
  • [10] Kumarappa DB, Peethamparan S. Stress-strain characteristics and brittleness index of alkali-activated slag and class C fly ash mortars. J Build Eng. 2020;32:101595.
  • [11] A.W. Bishop, Progressive failure with special reference to the mechanism causing it, Proceedings of the geotechnical conference, Oslo, 1967.
  • [12] Xia YJ, Li LC, Tang CA, Li XY, Ma S, Li M. A new method to evaluate rock mass brittleness based on stress-strain curves of class I. Rock Mech Rock Eng. 2017;50(5):1123–39.
  • [13] Ai C, Zhang J, Li YW, Zeng J, Yang XL, Wang JG. Estimation criteria for rock brittleness based on energy analysis during the rupturing process. Rock Mech Rock Eng. 2016;49(12):4681–98.
  • [14] Kivi IR, Ameri M, Molladavoodi H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves. J Pet Sci Eng. 2018;167:1–19.
  • [15] Q. Fu, M. Bu, L. Su, L. Liu, L. Chen, N. Li, D. Niu, Triaxial mechanical behaviour of hybrid basalt-polypropylene fibre-reinforced concrete: The effect of micro-fibres at multi scale levels, Mater. Struct. 54 (2020) https://doi.org/10.1617/s11527-021-01723-9.
  • [16] Fu Q, Bu M, Su L, Guo B, Chen L, Song H, Yuan Q, Niu D. Dynamic triaxial compressive response and failure mechanism of basalt fibre-reinforced coral concrete. Int J Impact Eng. 2021;156:103930.
  • [17] Folino P, Xargay H. Recycled aggregate concrete-Mechanical behavior under uniaxial and triaxial compression. Constr Build Mater. 2014;56:21–31.
  • [18] Ren GM, Wu H, Fang Q, Liu JZ, Gong ZM. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses. Constr Build Mater. 2016;113:1–14.
  • [19] Feng M, Wang Z, Wu L. Experimental study on high-strength concrete, ultrahigh-strength concrete and corresponding mortar under triaxial compression. Arab J Sci Eng. 2021. https://doi.org/10.1007/s13369-021-05663-y.
  • [20] Da B, Yu H, Ma H, Tan Y, Mi R, Dou X. Experimental investigation of whole stress-strain curves of coral concrete. Constr Build Mater. 2016;122:81–9.
  • [21] Li VC, Maalej M. Toughening in cement based composites. Part II: fiber reinforced cementitious composites. Cem Concr Compos. 1996;18(4):239–49.
  • [22] Zhang D, Ranjith PG, Perera MSA. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. J Petrol Sci Eng. 2016;143:158–70.
  • [23] Fu Q, Xu W, Li D, Li N, Niu D, Zhang L, Guo B, Zhang Y. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: Experimental characterisation and strength criterion. Cem Concr Compos. 2021;118:103954.
  • [24] Bischoff PH, Perry SH. Compressive behavior of concrete at high strain rates. Mater Struct. 1991;24:45–50.
  • [25] Page CL, Page MM. Durability of concrete and cement composites. England: Woodhead Publishing; 2007.
  • [26] Pan H, She W, Zuo W, Zhou Y, Huang J, Zhang Z, Geng Z, Yao Y, Zhang W, Zheng L, Miao C, Liu J. Hierarchical toughening of a biomimetic bulk cement composite. ACS Appl Mater Inter. 2020;12(47):53297–309.
  • [27] Zhao L, Guo X, Ge C, Li Q, Guo L, Shu X, Liu J. Mechanical behavior and toughening mechanism of polycarboxylate super-plasticizer modified graphene oxide reinforced cement composites. Compos Part B Eng. 2017;113:308–16.
  • [28] Merchant IJ, Macphee DE, Chandler HW, Henderson RJ. Toughening cement-based materials through the control of interfacial bonding. Cem Concr Res. 2001;31(12):1873–80.
  • [29] Chen J, Akono AT. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res. 2020;137: 106197.
  • [30] Lu F. Effect of carbon nanotubes on macroscopic properties of cement and microscopic mechanism. School of Civil Engineering: Guangzhou University; 2019.
  • [31] Ma K, Huang X, Shen J, Hu M, Long G, Xie Y, Zeng X, Xu Z, Zhang W. The morphological characteristics of brick-concrete recycled coarse aggregate based on the digital image processing technique. J Build Eng. 2021;44:103292.
  • [32] Zou B, Chen SJ, Korayem AH, Collins F, Wang CM, Duan WH. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon. 2015;85:212–20.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-192ca08c-8b2f-4f64-8962-070c9a2e084c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.