Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Mechanizm autokonsolidacji prototypów porowatych implantów wytworzonych przez spiekanie sferycznych proszków Ti-6Al-4V
Języki publikacji
Abstrakty
Electro-Discharge-Sintering (EDS) was employed to fabricate Ti-6Al-4V porous implant prototypes from atomized powders (100 – 150 μm), that were subjected to discharges of 0.75 to 2.0 kJ/0.7g-powder from 150, 300, and 450 μF capacitors. Both fully porous and porous-surfaced Ti-6Al-4V compacts with various solid core sizes were self-consolidated in less than 86 – 155 μsec. It is known that EDS can simultaneously produce the pinch pressure to squeeze and deform powder particles and the heat to weld them together. The formation of a solid core in these prototypes depends on the amounts of both the pinch pressure and heat generated during a discharge. The size of the solid core and the thickness of the porous layer can be successfully controlled by manipulating the discharge conditions such as input energy and capacitance.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1185--1189
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 143-747, South Korea
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 143-747, South Korea
autor
- Wonkwang Health Science University, Department of Dental Laboratory Technology, Iksan 570-750, South Korea
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 143-747, South Korea
autor
- Sejong University, Faculty of Nanotechnology and Advanced Materials Engineering, Seoul 143-747, South Korea
autor
- Colorado School of Mines, Department of Metallurgical and Materials Engineering, Golden 80401, USA
autor
- Korea Aerospace University, Department of Materials Engineering, Goyang-Si 412-791, South Korea
Bibliografia
- [1] D. Deporter, R. Todescan, P. Watson, M. Pharoah, R. M. Pilliar, G. Tomlinson, Int. J. Oral Maxillofacial Implants 16, 527 (2001).
- [2] D. Deporter, R.M. Pilliar, R. Todescan, P. Watson, M. Pharoah, Int. J. Oral Maxillofacial Implants 16, 653 (2001).
- [3] H. Q. Nguyen, D. Deporter, P. M. Pilliar, N. Valiquette, R. Yakubovich, Biomater. 25, 865 (2004).
- [4] V. Amigo, M.D. Salvador, F. Romero, C. Solves, J. F. Moreno, J. Mater. Proces. Technol. 14, 117 (2003).
- [5] M. M. Dewidar, J. K. Lim, J. Alloys Comp. 454, 442 (2008).
- [6] K. Asaoka, N. Kuwayama, O. Okuno, I. Miura, J. Biomed. Mater. Res. 19, 699 (1985).
- [7] S. Yue, R. M. Pillar, G. C. Weatherly, J. Biomed. Mater. Res. 18, 1043 (1984).
- [8] R. M. Pilliar, J. Biomed. Mater. Res. 21, 1 (1987).
- [9] H. S. Jang, Y. J. Cho, T. J. Kang, K. B. Kim, W. H. Lee, J. Kor. Inst. Metals Mater. 47, 488 (2009).
- [10] Y. W. Cheon, N. H. Oh, Y. H. Kim, C. S. Byun, S. H. Lee, W. H. Lee, J. Kor. Powd. Met. Inst. 12, 1 (2005).
- [11] Y. W. Cheon, Y. J. Cho, T. J. Kang, J. Y. Kim, J. S. Park, C. S. Byun, S. H. Lee, W. H. Lee, J. Kor. Inst. Metals Mater. 47, 660 (2009).
- [12] Y. J. Cho, Y. H. Kim, Y. H. Jo, M. J. Kim, H. S. Kim, S. W. Kim, J. H. Park, W. H. Lee, J. Kor. Powd. Met. Inst. 20, 376 (2013).
- [13] D. Eylong, F. H. Froes, Symposium on Titanium Rapid Solidification Technology, F. H. Froes and D. Eylong (eds.), AIME, Warrendale 1986.
- [14] D. K. Kim, H. R. Pak, K. Okazaki, Mater. Sci. Eng. A 104, 191 (1988).
- [15] M. Shakery, S. Al-Hassani, T. J. Davies, Powd. Metall. Int. 11, 120-125 (1970).
- [16] T. H. Wu, Solid Mechanics, Alleyn and Bacon, Boston 1976.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1928b5d2-6e01-40b2-867f-08bb9ae4a565