Konrad WITKIEWICZ

e-mail: kwit@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Modelowanie matematyczne mikrofalowej regeneracji wybranych adsorbentów węglowych i zeolitowych

Wstęp

Proces termicznej regeneracji adsorbentów w kolumnach z nieruchomym złożem za pomocą przegrzanej pary wodnej lub strumieniem gorącego gazu przemywającego charakteryzuje się dużą czaso- oraz energochłonnością. Metody ogrzewania objętościowego, między innymi za pomocą mikrofal, stanowią obiecującą alternatywę dla klasycznych rozwiązań.

W procesach adsorpcji zmiennotemperaturowej wspomaganych ogrzewaniem mikrofalowym MTSA (*Microwave Temperature Swing Adsorption*) w etapie desorpcji energia fal elektromagnetycznych ulega bezpośredniej dyssypacji w postaci ciepła w całej objętości adsorbentu. Ogrzewanie mikrofalowe nie wymaga istnienia gradientu temperatury w adsorbencie, a gaz przemywający służy w tym przypadku głównie do wymywania zdesorbowanych składników z kolumny. Regeneracja adsorbentów wspomagana mikrofalami przebiega z dużą intensywnością, a strumienie na wylocie z kolumny charakteryzują się wysokim stężeniem zdesorbowanych składników.

Model matematyczny

Rozpatrywany jest etap mikrofalowej desorpcji procesu MTSA, który następuje po nasyceniu nieruchomego złoża adsorbentu zaadsorbowanym składnikiem w etapie adsorpcji. Złoże znajduje się w cylindrycznej kolumnie o wysokości 0,33 m i średnicy 0,05 m, do której doprowadzany jest strumień gazu przemywającego (azotu) w ilości 120 dm³/h o temperaturze 298 K. Analizowany proces jest nierównowagowy, nieizotermiczny oraz nieadiabatyczny.

Przyjmuje się następujące założenia:

- faza gazowa jest mieszaniną inertu oraz adsorbatu i spełnia prawo gazu doskonałego;
- występuje równowaga cieplna między fazą gazową i stałą, a lokalne temperatury obu faz są sobie równe;
- pomija się akumulację ciepła w fazie gazowej oraz opór cieplny w ściance kolumny;
- nie uwzględnia się rozkładu natężenia pola elektrycznego w złożu (głębokość wnikania mikrofal jest większa od grubości warstwy adsorbentu);
- spadek ciśnienia w kolumnie nie jest uwzględniany;
- promieniowe gradienty temperatur, stężenia i prędkości strumienia w złożu są pomijalne;
- fizyczne właściwości adsorbentu i adsorbatu są stałe.
- Model matematyczny składa się z następującego układu równań: *Bilans masy:*

$$-D_L \rho_M \varepsilon \frac{\partial^2 Y_A}{\partial z^2} + G_l \frac{\partial Y_A}{\partial z} + \rho_M \varepsilon \frac{\partial Y_A}{\partial t} + \rho_b \frac{\partial q_A}{\partial t} = 0$$
(1)

Bilans ciepła:

$$-\lambda_{z}\frac{\partial^{2}T}{\partial z^{2}} + G_{i}(c_{i} + Y_{A}c_{a})\frac{\partial T}{\partial z} + \rho_{b}(c_{s} + q_{A}\bar{c}_{A})\frac{\partial T}{\partial t} + \rho_{b}\Delta H\frac{\partial q_{A}}{\partial t} + \dots$$

$$\dots + Q_{v}(q_{A}, T, z) + 4k_{w}(T - T_{\infty})/D = 0$$
(2)

Wydajność źródła ciepła wynikająca z dyssypacji energii mikrofal zdefiniowana jest jako [*Witkiewicz i Nastaj, 2014*]:

$$Q_{\nu}(q_{A}, T, z) = 2\pi f \varepsilon_{0} [\varepsilon_{A}(q_{A})\varepsilon_{A}^{"}(T) + \varepsilon_{s}\varepsilon_{s}^{"}]E^{2}$$
(3)

Kinetyka ruchu masy w fazie stalej opisana jest modelem liniowej siły napędowej LDF (Linear Driving Force) [Glueckauf, 1955]:

$$\frac{\partial q_A}{\partial t} = K(q_A^* - q_A) \tag{4}$$

Współczynnik przenikania masy *K* zdefiniowany jest zależnością uwzględniającą opory ruchu masy zaadsorbowanego składnika w filmie otaczającym ziarno oraz wewnątrz ziarna adsorbentu [*Ko i in., 2002*]:

$$\frac{1}{K} = \frac{\rho_p d_p}{6k_f \rho_g} \frac{q_A^2}{y_A} + \frac{d_p^2}{60D_{ef}}$$
(5)

Dla liczby *Reynoldsa* w zakresie 3 < *Re* < 230, współczynnik oporu ruchu masy w filmie można obliczyć z zależności [*Edwards i Richardson, 1968*]:

$$k_f = \frac{0.357}{\varepsilon} R e^{0.64} S c^{0.33} \frac{D_{Ai}}{d_p}$$
(6)

Szczegółowy opis modelu matematycznego znaleźć można w pracy [*Witkiewicz i Nastaj, 2014*].

Warunki początkowe i brzegowe

Model matematyczny rozwiązywany jest dla zadanych początkowych wartości stężenia składnika w fazie stałej i temperatury złoża:

$$Y_A(z, 0) = Y_A^*(q_A, 0), \quad T(z, 0) = T_{ini} = 293 \text{K}$$
 (7)

Warunki brzegowe określające stężenie składnika w fazie gazowej na włocie (z = L) i wylocie kolumny (z = 0) zdefiniowano następująco:

$$Y_{4}(L, t) = 0, \quad \delta Y_{4}/\delta z \Big|_{r=0} = 0$$
 (8)

natomiast dla temperatury złoża:

$$-\lambda_z \delta T / \delta z \Big|_{z=0} = \alpha (T_{x=L} - T_{N_2}), \quad \delta T / \delta z \Big|_{z=0} = 0$$
⁽⁹⁾

gdzie temperatura azotu na wlocie do kolumny wynosi $T_{N_2} = 298$ K, a założona wartość współczynnika wnikania ciepła $\alpha = 20$ W/m²K.

Wyniki obliczeń

Układ równań modelu matematycznego mikrofalowej desorpcji (1), (2) oraz (4) rozwiązywano metodą linii [*Schiesser*, 1991] otrzymując temperaturowe i stężeniowe krzywe wyjścia dla danej wartości natężenia pola elektrycznego *E* oraz strumienia gazu przemywającego *G_i*. Analizowano mikrofalową desorpcję toulenu lub propan-2-olu z dwóch komercyjnych adsorbentów: węgla aktywnego *Sorbonorit 3* (*Norit*, Holandia) oraz zeolitu *HiSiv 1000* (*UOP*, USA). Podstawowe właściwości fizyczne układu adsorpcyjnego przedstawiono w tab. 1. [*Witkiewicz i Nastaj, 2014*].

Tab. 1. Właściwości fizyczne układu adsorpcyjnego

Właściwość	Sorbonorit 3	HiSiv 1000	
Powierzchnia właściwa S_p , (BET), $[m^2/g]$	1400	370	
Gęstość nasypowa złoża ρ_b , [kg/m ³]	410	550	
Gęstość ziarna ρ_p , [kg/m ³]	880	993	
Porowatość złoża ε , $[m^3/m^3]$	0,540	0,446	
Porowatość ziarna ε_{p} , $[m^3/m^3]$	0,610	0,275	
Stała dielektryczna $\boldsymbol{\varepsilon}_{s}$, [-]	4,8	1,6	
Współcz. strat dielektrycznych $\boldsymbol{\varepsilon}_{s}^{"}$, [-]	10	0,05	
Właściwość	Toluen	Propan-2-ol	
Współcz. strat dielektrycznych $\boldsymbol{\mathcal{E}}_{A}^{"}$, [-]	0,051 (40°C)	$\mathcal{E}_{A}^{"}(t) = 22,507 + 6,296 \cdot 10^{-4} t^{2} - 2,695 t^{0.5}$	

INŻYNIERIA I APARATURA CHEMICZNA

Nr 4/2014

Desorpcja mikrofalowa propan-2-ol - Sorbonorit 3, E=1400 V/m toluen - Sorbonorit 3, E=3000 V/m propan-2-ol - HiSiv 1000, E=3000 V/m 2 എ toluen - HiSiv 1000, E=3000 V/m YA [mol/mol] 1000 2000 3000 4000 5000 t [s] Rys. 1. Krzywe wyjścia stężenia składnika

w etapie mikrofalowej desorpcji

Rys. 2. Krzywe wyjścia temperatury propan-2-olu w regeneracji Sorbonoritu 3

Zmierzoną doświadczalnie równowagę adsorpcyjną toluenu oraz propan-2-olu na wybranych adsorbentach [Rudnicka, 2007; Wilczyńska, 2009] opisano wielotemperaturowym równaniem izotermy Totha:

$$q_{A}^{*} = \frac{mp_{A}}{\left\{b_{0}\exp\left[-n\Delta H/(RT)\right] + p_{A}^{n}\right\}^{1/n}}$$
(10)

której parametry b_0 , *m*, *n* oraz ΔH wyznaczone metoda regresji danych doświadczalnych przedstawiono w tab. 2.

Tab. 2. Zestawienie stałych wielotemperaturowego modelu Totha

Stała -	Toluen		Propan-2-ol	
	Sorbonorit 3	HiSiv 1000	Sorbonorit 3	HiSiv 1000
<i>m</i> , [mol/kg]	6,9528	1,1963	7,4568	1,1963
b_0 , [Pa ⁿ]	77,9708	200570971,935	12381982,920	200570971,935
n, [-]	0,2247	0,8067	0,5979	0,8067
<i>∆H</i> , [J/mol]	60759,85	53955,99	60025,81	53955,99
ε, [%]	2,19	20,06	10,35	9,21

Na rys. 1 i 2 przedstawiono obliczone przykładowe stężeniowe oraz temperaturowe krzywe wyjścia. Dla układu toluen-HiSiv 1000 desorpcja mikrofalowa prowadzona nawet przy dużych natężeniach pola elektrycznego E = 3000 V/m jest nieefektywna.

Rys. 3 obrazuje profile stężenia propan-2-olu w fazie stałej podczas regeneracji Sorbonoritu 3. Aby zmniejszyć zapotrzebowanie na energię elektryczną zasilającą generator mikrofalowy oraz zapobiec nadmiernemu nagrzaniu się złoża, jego temperaturę regulowano wyłączając źródło ciepła po przekroczeniu zadanej temperatury, a następnie włączano po wystudzeniu do poziomu pięciu stopni poniżej temperatury regulacji. Dla układu propan-2-ol - Sorbonorit 3 temperatura regulacji mierzona w połowie wysokości złoża wynosiła 423 K.

Oznaczenia

 c_a, \bar{c}_a, c_i, c_s – ciepło właściwe (adsorptywu, adsorbatu, inertu, adsorbentu) [J/(mol K)],

- d_p średnica ziarna adsorbentu [m],
- \dot{D} średnica kolumny [m],
- D_{Ai} współczynnik dyfuzji molekularnej [m²/s],
- D_{ef} efektywny współczynnik dyfuzji [m²/s],
- D_L współczynnik dyspersji osiowej [m²/s],
- E natężenie pola elektrycznego [V/m],
- f częstotliwość [Hz],
- G_i gęstość strumienia masy inertu [mol/(m²s)],
- K współczynnik przenikania masy [1/s],
- k_f współczynnik transportu masy w filmie płynu [m/s],
- k_w współczynnik przenikania ciepła [W/(m²K)],
- q_A stężenie adsorbatu [mol/kg],
- Q_v obj. wydajność źródła ciepła [W/m³],
- $\tilde{R}e$ liczba Reynoldsa [-],
- Sc liczba Schmidta [-],

- t czas [s],
- T temperatura [K],
- T_{∞} temp. otoczenia [K],
- y_A ułamek molowy adsorptywu [mol_A/mol],

t=0 s

- Y_{A} stosunek molowy adsorptywu [mol_A/mol_i],
- z osiowa zmienna położenia [m],
- Z = z/L bezwymiarowa zmienna położenia [-],
- α współczynnik wnikania ciepła [W/(m²K)],
- ε porowatość złoża [m³/m³],
- ε_0 przenikalność elektryczna próżni [F/m],
- ε_{A} udział objętościowy adsorbatu [m³/m³],
- $\varepsilon_{A}^{"}$ współczynnik strat diel. adsorbatu [-],
- ε_s udział objętości adsorbentu [m³/m³],
- $\mathcal{E}_{s}^{''}$ współczynnik strat diel. adsorbentu [-],
- ΔH izosteryczne ciepło adsorpcji [J/mol],
- λ_z współczynnik przew. ciepła adsorbentu [W/(m·K)],
- ρ_b gęstość nasypowa adsorbentu [kg/m³],
- ρ_g gęstość gazu [kg/m³],
- ρ_M gęstość mol. gazu [mol/m³],
- ρ_p gęstość ziarna adsorbentu [kg/m³]

Wnioski

Wyniki symulacji procesu mikrofalowej desorpcji wskazują na możliwość prowadzenia procesu dla tych układów adsorpcyjnych, w których adsorbent i/lub adsorbat wykazują zdolność absorpcji i dyssypacji energii mikrofal w postaci ciepła. Proces najintensywniej przebiega w układach związek polarny (propan-2-ol) - adsorbent weglowy (Sorbonorit 3). Natomiast związki niepolarne (toluen) nie mogą być efektywnie desorbowane z adsorbentów transparentnych dla mikrofal (zeolity).

LITERATURA

- Edwards M F., Richardson J.F., 1968. Gas dispersion in packed beds Chem. Eng. Sci., 23, 109-123. DOI: 10.1016/0009-2509(68)87056-3
- Glueckauf E., 1955. Theory of chromatography. Part 10. Formula for diffusion into spheres and their application to chromatography. Trans. Faraday Soc., 51, 1540-1551. DOI: 10.1039/TF9555101540
- Ko D., Kim D., Moon H., Choi D.-K., 2002. Analysis of purge gas temperature in cyclic TSA process. Chem. Eng. Sci., 57, 179-195. DOI: 10.1016/S0009-2509(01)00358-X
- Rudnicka J., 2007. Modelowanie usuwania lotnych związków organicznych ze strumieni gazowych metodą adsorpcji zmiennotemperaturowej próżniowej VTSA. Praca doktorska, Politechnika Szczecińska, Szczecin
- Schiesser W.E., 1991. The numerical method of lines. Integration of partial differential equations. Academic Press, San Diego
- Wilczyńska B., 2009. Adsorpcja lotnych związków organicznych z fazy gazowej na wybranych typach zeolitów. Praca doktorska, Politechnika Szczecińska, Szczecin
- Witkiewicz K., Nastaj J., 2014. Modeling of microwave-assisted regeneration of selected adsorbents loaded with water or toluene. Drying Technol., DOI: 10.1080/07373937.2014.900506 (on-line)

t=30 mir t=45 min t=90 mir t=3 godz

Rys. 3. Profile stężenia propan-2-olu w fazie stałej

w regeneracji Sorbonoritu 3

propan-2-ol – Sorbonorit 3 E=1400 V/m t=5 min

