PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Learning-free deep features for multispectral palm-print classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The feature-extraction step is a major and crucial step in analyzing and understanding raw data, as it has a considerable impact on system accuracy. Despite the very acceptable results that have been obtained by many handcrafted methods, these can unfortunately have difficulty representing features in the cases of large databases or with strongly correlated samples. In this context, we attempt to examine the discriminability of texture features by proposing a novel, simple, and lightweight method for deep feature extraction to characterize the discriminative power of different textures. We evaluated the performance of our method by using a palm print-based biometric system, and the experimental results (using the CASIA multispectral palm--print database) demonstrate the superiority of the proposed method over the latest handcrafted and deep methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
243--271
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Echahid Cheikh Larbi Tebessi University, Laboratory of Mathematics, Informaticsand Systems (LAMIS), Tebessa, 12002, Algeria
  • Echahid Cheikh Larbi Tebessi University, Laboratory of Mathematics, Informaticsand Systems (LAMIS), Tebessa, 12002, Algeria
  • Echahid Cheikh Larbi Tebessi University, Laboratory of Mathematics, Informaticsand Systems (LAMIS), Tebessa, 12002, Algeria
Bibliografia
  • [1] Alhindi T.J., Kalra S., Ng K.H., Afrin A., Tizhoosh H.R.: Comparing LBP, HOG and Deep Features for Classification of Histopathology Images. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, 2018.
  • [2] Ali M.M., Yannawar P.L., Gaikwad A.: Multi-Algorithm of Palmprint Recognition System Based on Fusion of Local Binary Pattern and Two-Dimensional Locality Preserving Projection, Procedia Computer Science, vol. 115, pp. 482–492, 2017.
  • [3] Almaghtuf J., Khelifi F., Bouridane A.: Fast and efficient difference of blockmeans code for palmprint recognition, Machine Vision and Applications, vol. 31,51, 2020. doi: 10.1007/s00138-020-01103-3.
  • [4] Amraoui A., Fakhri Y., Ait Kerroum M.: Multispectral Palmprint Recognition based on Fusion of Local Features, 6th International Conference on Multimedia Computing and Systems (ICMCS), Rabat, Morocco, pp. 1–6, 2018.
  • [5] Aounallah A., Bradji L., Bendjenna H.: Is There Still Confidence In Hand-Crafted Feature Extraction Techniques To Use Them In Biometric Systems?, IEEE International Conference on Recent Advances in Mathematics and Informatics (ICRAMI), Tebessa, Algeria, pp. 1–6, 2021.
  • [6] Barra S., De Marsico M., Nappi M., Narducci F., Riccio D.: A Hand-based Biometric System in Visible Light for Mobile Environments, Information Sciences, vol. 479, pp. 472–485, 2019.
  • [7] Bendjenna H., Meraoumia A., Chergui O.: Pattern recognition system: from classical methods to deep learning techniques, Journal of Electronic Imaging, vol. 27(3), 2018.
  • [8] Bensid K., Samai D., Laallam F.Z., Meraoumia A.: Deep learning feature extraction for multispectral palmprint identification, Journal of Electronic Imaging, vol. 27(3), 2018.
  • [9] Bouchemha A., Meraoumia A., Laimeche L., Houam L.: Learning Hand-Crafted Palm-Features for a High-Performance Biometric Systems, WITS 2020: Proceedings of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems, pp. 855–866, 2020.
  • [10] CASIA Multispectral palmprint database, 2005. http://biometrics.idealtest.org/.
  • [11] Chaa M., Boukezzoula N., Meraoumia A.: Features-Level Fusion of Reflectance and Illumination Images in Finger-Knuckle-Print Identification System, International Journal on Artificial Intelligence Tools, vol. 27(3), 2018.
  • [12] Chan T.H., Jia K., Gao S., Lu J., Zeng Z., Ma Y.: PCANet: A Simple Deep Learning Baseline for Image Classification?, IEEE Transactions on Image Processing, vol. 24(12), pp. 5017–5032, 2015.
  • [13] Charfi N., Trichili H., Alimi A.M., Solaiman B.: Local invariant representation for multi-instance toucheless palmprint identification. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 003522–003527, 2016.
  • [14] Chen J., Moon Y.S., Wong M.F., Su G.: Palmprint authentication using a symbolic representation of images, Image and Vision Computing, vol. 28(3), pp. 343–351, 2010.
  • [15] Chen Y.-Y., Hsia C.-H., Chen P.-H.: Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network, IEEE Access, vol. 9, pp. 149796–149806, 2021.
  • [16] Chergui O., Bendjenna H., Meraoumia A., Chitroub S.: Combining palmprint and finger-knuckle-print for user identification, International Conference on Information Technology for Organizations Development (IT4OD), Fez, Morocco, pp. 1–5, 2016.
  • [17] Cho S., Oh B.-S., Toh K.A., Lin Z.: Extraction and Cross-Matching of Palm-Veinand Palmprint From the RGB and the NIR Spectrums for Identity Verification, IEEE Access, vol. 8, pp. 4005–4021, 2020.
  • [18] Dvorak M., Drahansky M.: Hand shape recognition and palm-print recognition using 2D and 3D features,Hand-Based Biometrics: Methods and Technology, pp. 283–307, 2018.
  • [19] El-Ghandour M., Obayya M.I., Yousef B., Areed N.F.: Palmvein Recognitionusing Block-Based WLD Histogram of Gabor Feature Maps and Deep NeuralNetwork with Bayesian Optimization, IEEE Access, vol. 9, pp. 97337–97353, 2021.
  • [20] Fei L., Lu G., Jia W., Teng S., Zhang D.: Feature Extraction Methods for Palm-print Recognition: A Survey and Evaluation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49(2), pp. 346–363, 2018.
  • [21] Fei L., Zhang B., Xu Y., Huang D., Jia W., Wen J.: Local Discriminant Direction Binary Pattern for Palmprint Representation and Recognition, IEEE Transactions on Circuits and Systems for Video Technology, vol. 30(2), pp. 468–481, 2020.
  • [22] Genovese A., Piuri V., Plataniotis K.N., Scotti F.: PalmNet: Gabor-PCA Convolutional Networks for Touchless Palmprint Recognition, IEEE Transactions on Information Forensics and Security, vol. 14(12), pp. 3160–3174, 2019.
  • [23] Genovese A., Vincenzo P., Fabio S.: Touchless Palmprint Recognition Systems, Springer Cham, Switzerland, 2014.
  • [24] Hassaballah M.H., Khalid M.: Recent Advances in Computer Vision, Studies in Computational Intelligence, vol. 804, 2019.
  • [25] Jing X.Y., Zhang D.: A face and palmprint recognition approach based on discriminant DCT feature extraction, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34(6), pp. 2405–2415, 2004.
  • [26] Kang W., Liu Y., Wu Q., Yue X.: Contact-free palm-vein recognition based on local invariant features, PLoS ONE, vol. 9(5), 2014.
  • [27] Khan Z., Mian A., Hu Y.: Contour code: Robust and efficient multispectral palm-print encoding for human recognition. In: International Conference on ComputerVision, Barcelona, Spain, pp. 1935–1942, 2012.
  • [28] Lu J., Liong V.E., Zhou X., Zhou J.: Learning Compact Binary Face Descriptor for Face Recognition,Transactions on Pattern Analysis and Machine Intelligence, vol. 37(10), pp. 2041–2056, 2015.
  • [29] Meraoumia A., Kadri F., Bendjenna H., Chitroub S., Bouridane A.: Improving Biometric Identification Performance Using PCANet Deep Learning and Multi-spectral Palmprint. In: Biometric Security and Privacy. Signal Processing for Security Technologies, pp. 51–69, Springer, Cham, 2017.
  • [30] Michele A., Colin V., Santika D.D.: MobileNet Convolutional Neural Networksand Support Vector Machines for Palmprint Recognition, Procedia Computer Science, vol. 157, pp. 110–117, 2019.
  • [31] Ng C.J., Teoh A.B.J.: DCTNet: A simple Learning-free Approach for Face Recognition, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, pp. 761–768, 2015.
  • [32] Olson T.: The Discrete Fourier Transform. In: Applied Fourier Analysis, Birkhauser, New York, NY, 2017.
  • [33] Qin H., El Yacoubi M.A., Lin J., Liu B.: An Iterative Deep Neural Network for Hand-Vein Verification, IEEE Access, vol. 7, pp. 34823–34837, 2019.
  • [34] Svoboda J., Masci J., Bronstein M.M.: Palmprint recognition via discriminative index learning. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 4232–4237, 2016. doi: 10.1109/ICPR.2016.7900298.
  • [35] Thamri E., Aloui K., Naceur M.: Improving Palmprint based Biometric System Performance using Novel Multispectral Image Fusion Scheme, International Journal of Advanced Computer Science and Applications (IJACSA), vol. 11(8), pp. 543–553, 2020.
  • [36] Thapar D., Jaswal G., Nigam A., Kanhangad V.: PVSNet: Palm Vein Authentication Siamese Network Trained using Triplet Loss and Adaptive Hard Mining by Learning Enforced Domain Specific Features. In: 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA), pp. 1–8, 2019.
  • [37] Wang P., Qin H.: Palm-vein verification based on U-Net. In: IOP Conference Series: Materials Science and Engineering, Volume 806, International Conference on AI and Big Data Application (AIBDA 2019) 20–22 December 2019, Guangzhou, China, vol. 806, 2019.
  • [38] Wen Y., Zhang K., Li Z., Qiao Y.: A Discriminative Feature Learning Approach for Deep Face Recognition. In: Computer Vision – ECCV 2016. 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII, pp. 499–515, Springer, 2016.
  • [39] Wolf L., Hassner T., Taigman Y.: Descriptor Based Methods in the Wild. In: Workshop on Faces in “Real-Life” Images at the European Conference on Computer Vision (ECCV), Marseille, France, pp. 1–14, 2008.
  • [40] Wu W., Elliott S.J., Lin S., Yuan W.: Low-cost Biometric Recognition System based on NIR Palm Vein Image, IET Biometrics, vol. 8(3), pp. 206–214, 2019.
  • [41] Zhao S., Zhang B.: Joint Constrained Least-Square Regression With Deep Convolutional Feature for Palmprint Recognition, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52(1), pp. 511–522, 2020.
  • [42] Zheng Q., Kumar A., Pan G.: A 3D feature descriptor recovered from a single 2D palmprint image, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38(6), pp. 1272–1279, 2016.
  • [43] Zhong D., Du X., Zhong K.: Decade progress of palmprint recognition: a brief survey, Neurocomputing, vol. 328, pp. 16–28, 2019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19211030-7241-4bbe-859a-509b75fbc6df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.