PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of three ionospheric broadcast models for global navigation satellite systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An ionospheric model and corresponding coefficients broadcasted via GNSS navigation message are generally used to estimate the time delay for single-frequency GNSS users. In this article, the capabilities of three ionospheric models, namely, Klobuchar model, NeQuick Galileo version (NeQuick G), and Neustrelitz TEC broadcast model (NTCM-BC), were assessed. The models were examined in two aspects: total electron content (TEC) prediction and ionospheric delay correction effects in single-point positioning. Results show that both NeQuick G and NTCM-BC models outperformed Klobuchar model for predicting global TEC values during all the test days. Compared with Slant TEC (STEC) along the receiver-to-satellite ray path derived from IGS global ionosphere map (GIMs), STEC from NeQuick G and NTCM-BC models tend to have less bias than those from Klobuchar model in most situations. The point positioning results were improved by applying ionospheric broadcast models especially at the mid- and low-latitude stations.
Czasopismo
Rocznik
Strony
395--410
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
autor
  • School of Land Science and Technology, China University of Geosciences (Beijing), Beijing, China
Bibliografia
  • 1. Angrisano A, Gaglione S, Gioia C, Massaro M, Robustelli U (2013a) Assessment of NeQuick ionospheric model for Galileo single-frequency users. Acta Geophys 61(6):1457–1476. doi:10.2478/s11600-013-0116-2
  • 2. Angrisano A, Gaglione S, Gioia C, Massaro M, Troisi S (2013b) Benefit of the NeQuick Galileo version in GNSS single-point positioning. Int J Navig Observ 2013(3):32–36. doi:10.1155/2013/302947
  • 3. Bidaine B, Lonchay M, Warnant R (2013) Galileo single frequency ionospheric correction: performances in terms of position. GPS Solut 17:63–73. doi:10.1007/s10291-012-0261-0
  • 4. European Commission (2015), European GNSS (Galileo) open service—ionospheric correction algorithm for Galileo single frequency users, European Union
  • 5. Farah A (2009) Comparison of GPS/Galileo single frequency ionospheric models with vertical TEC maps. Artif Satell 43(2):75–90. doi:10.2478/v10018-009-0008-5
  • 6. Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46:RS0D12. doi:10.1029/2010RS004584
  • 7. Galileo Information Center (2006) Galileo open service signal in space interface control document, draft 0. OS SIS ICD, São José dos Campos
  • 8. García-Rigo A, Monte E, Hernández-Pajares M, Juan JM, Sanz J, Aragón-Angel A, Salazar D (2011) Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci 46:RS0D25. doi:10.1029/2010RS004643
  • 9. Hochegger G, Nava B, Radicella S, Leitinger R (2000) A family of ionospheric models for different uses. Phys Chem Earth 25(4):307–310
  • 10. Hoque MM, Jakowski N (2015) An alternative ionospheric correction model for global navigation satellite systems. J Geod 89:391–406. doi:10.1007/s00190-014-0783-z
  • 11. Hoque MM, Jakowski N, Berdermann J (2015) An ionosphere broadcast model for next generation GNSS. ION GNSS + 2015, Tampa
  • 12. Jakowski N (1996) TEC monitoring by using satellite positioning systems. In: Kohl H, Ruester R, Schlegel K (eds) Modern Ionos Sci. EGS, Katlenburg-Lindau, ProduServ GmbH Verlags service, Berlin
  • 13. Jakowski N, Hoque MM, Mayer C (2011) A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85(12):965–974. doi:10.1007/s00190-011-0455-1
  • 14. Klobuchar JA (1987) Ionospheric time-delay algorithm for single frequency GPS users. IEEE Trans Aerosp Electron Syst 23(3):325–331
  • 15. Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol I. American Institute of Aeronautics and Astronautics Inc., Washington, pp 485–515
  • 16. Leitinger R, Zhang ML, Radicella SM (2005) An improved bottomside for the ionospheric electron density model NeQuick. Ann Geophys 48(3):525–534. doi:10.4401/ag-3217
  • 17. Macalalad EP, Tsai L, Wu J, Liu C (2013) Application of the TaiWan Ionospheric Model to single-frequency ionospheric delay corrections for GPS positioning. GPS Solut 17:337–346. doi:10.1007/s10291-012-0282-8
  • 18. Nava B, Coïsson P, Amarante GM, Azpilicueta F, Radicella SM (2005) A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Ann Geophys 48(2):313–320. doi:10.4401/ag-3203
  • 19. Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys 70(15):1856–1862. doi:10.1016/j.jastp.2008.01.015
  • 20. Orús R, Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol Terr Phys 64:2055–2062. doi:10.1016/S1364-6826(02)00224-9
  • 21. Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27(1):35–40. doi:10.1016/S0273-1177(00)00138-1
  • 22. Radicella SM, Nava B, Coïsson P (2008) Ionospheric models for GNSS single frequency range delay corrections. Fís Tierra 20:27–39
  • 23. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. thesis, Bern University, Bern
  • 24. Wang N, Yuan Y, Li Z, Huo X (2016) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569. doi:10.1016/j.asr.2016.01.010
  • 25. Yu X, She C, Zhen W, Bruno N, Liu D, Yue X, Ou M, Xu J (2015) Ionospheric correction based on ingestion of global ionospheric maps into the NeQuick 2 model. World J, Sci. doi:10.1155/2015/376702
  • 26. Yuan Y, Ou J (2001) An improvement to ionospheric delay correction for single-frequency GPS users—the APR-I scheme. J. Geod. 75:331–336. doi:10.1007/s001900100182
  • 27. Yuan Y, Huo X, Ou J, Zhang K, Chai Y, Wen D, Grenfell R (2008) Refining the Klobuchar ionospheric coefficients based on GPS observations. IEEE Trans Aerosp Electron Syst 44(4):1498–1510. doi:10.1109/TAES.2008.4667725
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-191f3e89-54c2-4618-9b5e-c26da70138da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.