PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of thermal energy storage technology in the decarbonization of energy sector process - packed rock bed parameters analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the adiabatic installation of compressed gases energy storage. The authors present the results of analyzes for this type of installation due to the selection of thermal storage material. The simulations were carried out for basalt, granite and ceramics (alumina) as well as for porosity value from 0.375 to 0.39 of basalt-filled reservoirs in Thermal Energy Storage (TES) installation. Characteristics of outlet air temperature, air pressure drop amount of energy stored and external heat losses as a time functions during the charging phase are presented. The research indicated that due to the lowest density and average heat capacity of the materials studied, granite has the fastest and most intense physical exit loss from the storage tank which was approximately 1100 W. However, there was no significant effect on air pressure drop depending on the chosen accumulation materials. The effect of rock bed porosity on the pressure drop of flowing air was investigated. For a constant mass flow rate, pressure drop values ranging from 2200 Pa to 6200 Pa were obtained depending on the porosity value.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • MSc; Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • DSc; Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Strielkowski W., Civín L., Tarkhanova E., Tvaronavičienė M., Petrenko Y. (2021). Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 14(24).
  • [2] REN21. 2021. Renewables 2021 Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-948393-03-8. Available online: www.ren21.net (accessed on 14 February 2022).
  • [3] National Energy System reports. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2020 (accessed on 14 February 2022).
  • [4] Jurczyk M., Węcel D., Uchman W., Skorek-Osikowska A. (2022). Assessment of operational performance for an integrated “power to synthetic natural gas” system. Energies 15(1).
  • [5] Kotowicz J., Jurczyk M., Węcel D. (2021). The possibilities of cooperation between a hydrogen generator and a wind farm. International Journal of Hydrogen Energy 46(10).
  • [6] Kotowicz J., Jurczyk M (2019). Economic analysis of an installation producing hydrogen through water electrolysis. Journal of Power Technologies 99(3), 170-175.
  • [7] Bartela Ł. (2020). A hybrid energy storage system using compressed air and hydrogen as the energy carrier. Energy 196.
  • [8] Koceman A.S., Modi V. (2017). Value of pumped hydro storage in a hybrid energy generation allocation system. Applied Energy 205, 1202-1215.
  • [9] Uchman W., Skorek-Osikowska A., Jurczyk M., Węcel D. (2020). The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit. Energy 213.
  • [10] Węcel D., Jurczyk M., Uchman W., Skorek-Osikowska A. (2020). Investigation on system for renewable electricity storage in small scale integrating photovoltaics, batteries, and hydrogen generator. Energies 13(22), 1-19.
  • [11] Pfeiffer W. T., Witte F., Tuschy I., Bauer S. (2021). Coupled power plant and geostorage simulations of porous media compressed air energy storage (PM-CAES). Energy Conversion and Management, 249.
  • [12] Chaychizadeh F., Dehghandorost H., Aliabadi A., Taklifi A. (2018). Stochastic dynamic simulation of a novel hybrid thermal-compressed carbon dioxide energy storage system (T-CCES) integrated with a wind farm. Energy Conversion and Management, 166, 500-511.
  • [13] Tola V., Meloni V., Spadaccini F., Cau G. (2017). Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems. Energy Conversion and Management, 151, 342-356.
  • [14] Mehla N., Kumar A. (2021). Experimental evaluation of used engine oil based thermal energy storage coupled with novel evacuated tube solar air collector (NETAC). Journal of Energy Storage 2021.
  • [15] Liu X., Chen M., Xu Q., Gao K., Dang C., Li P., Luo Q., Zheng H., Song C., Tian Y., Yao H., Jin Y., Xuan Y., Ding Y. (2022). Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage. Applied Energy 240.
  • [16] Muthukumaran J., Senthil R. (2022). Experimental performance of a solar air heater using straight and spiral absorber tubes with thermal energy storage. Journal of Energy Storage, 45.
  • [17] Praveen R.P., Chandra Mouli K.V.V. (2022). Performance enhancement of parabolic trough collector solar thermal power plants with thermal energy storage capability. Ain Shams Engineering Journal, 13.
  • [18] Pachori H., Choudhary T., Sheorey T. (2022). Significance of thermal energy storage material in solar air heaters. Materials Today: Proceedings. In Press, Corrected Proof, Available online 6 January 2022.
  • [19] Rathore P., Gupta N., Yadav D., Shukla S., Kaul S. (2022). Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review. Sustainable Cities and Society 79.
  • [20] Andersen T., Vinkovic K., de Vries M., Kers B., Necki J., Swolkien J., Roiger A., Peters W., Chen H. (2021). Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system. Atmospheric Environment: X 12.
  • [21] Zheng C., Jiang B., Xue S., Chen Z., Li H. (2019). Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. Process Safety and Environmental Protection 127, 103-124.
  • [22] Barbour E., Mignard E., Ding Y., Li Y.(2015). Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage. Applied Energy 155, 804-815.
  • [23] Bashiri Mousavi S., Adib M., Soltani M., Razmi A.R., Nathwani J. (2021). Transient thermodynamic modeling and economic analysis of an adiabatic compressed air energy storage (A-CAES) based on cascade packed bed thermal energy storage with encapsulated phase change materials. Energy Conversion and Management 243.
  • [24] Bartela Ł., Lutyński M., Smolnik G., Waniczek S. Underground Compressed Air Storage Installation. European Patent Application, No. 20000302.8.
  • [25] Lee K-C., Baek W-K., Kwon H., S W-S., Yoh J.J. (2013). Analysis of melt-through process of 1.07 µm continuous wave high power laser irradiation on metal. Journal of Mechanical Science and Technology 27, 1745-1752.
  • [26] Jurczyk M., Rulik S., Bartela Ł. (2020). Thermal energy storage in rock bed - CFD analysis. Journal od Power Technologies, Vol. 100.
  • [27] Ochmann J., Rusin K., Rulik S., Bartela Ł. (2022). Identyfikacja współczynnika wnikania ciepła w procesie ładowania zasobnika Thermal Energy Storage na potrzeby adiabatycznego systemu CAES (Identification of the heat transfer coefficient in the Thermal Energy Storage charging process for the adiabatic CAES system). Współczesne problemy ochrony środowiska i energetyki, 147-157.
  • [28] Waniczek S., Ochmann J., Bartela Ł., Rulik S., Lutyński M., Brzuszkiewicz M., Kołodziej K., Smolnik G., Jurczyk M., Lipka M. (2022) Design and Construction Challenges for a Hybrid Air and Thermal Energy Storage System Built in the Post-Mining Shaft. Journal of Thermal Science.
  • [29] Labus M., Labus K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132, 1669-1676.
  • [30] Hartlieb P., Toifl M., Kuchar F., Meisels R., Antretter T. (2016). Thermo-physical properties of selected hard rocks and their relationto microwave-assisted comminution. Minerals Engineering, 91.
  • [31] Bindra H., Bueno P., Morris J.F., Shinnar R. (2013). Thermal analysis and exergy evaluation of packed bed thermal storage systems. Applied Thermal Engineering 52(2), 255-263.
  • [32] Bouvry B., Carrion A., Andujar J., Veron E., Ory S., Brassamin S., Echegut P., Escape C., Nahhas T., Py X., Bessada C. (2017). Mediterranean basin basalts as potential materials for thermal energy storage in concentrated solar plants, Solar Energy Materials and Solar Cells, 171, 50-59.
  • [33] Churchill S. W., Chu H. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat Mass Transfer 18, 1323-1329.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-191bb0a6-0787-4178-b61d-0c80933f52bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.