Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to determine the influence of PLGA bioresorbable polymer coating on corrosion resistance of metal biomaterial. Polymer coating deposited by immersion method was applied. Corrosion resistance of metal biomaterials (stainless steel, Ti6Al4V, Ti6Al7Nb) coated with PLGA polymer, after 90 days exposure to Ringer’s solution was tested. The amount of metal ions released to the solution was also investigated (inductively coupled plasma–atomic emission spectrometry (ICP-AES) method). The surface of the samples was observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Degradation of PLGA was monitored with the use of the 1 H NMR spectroscopy and GPC (Gel Permeation Chromatography). The studies were carried out for non-sterilized (NS) and sterilized (S) samples. Application of the polymer coating causes a reduction of release of metal ions to the solution. Depending on metal substrate different course of destruction of polymer layer was observed. After 90 days of incubation in Ringer’s solution polymer layer was highly degraded, however, the composition of copolymer (ratio of the comonomeric units in the chain) remained unchanged during the whole process, which suggests even degradation. The polymer layer reduced degradation kinetics of the metal substrate. Moreover, degradation process did not change surface morphology of metal substrate and did not disturb its integrity. The results obtained indicate that the applied polymer layer improves corrosion resistance of the alloys being investigated. Thus, the developed implants with bioresorbable coatings could be advantageous for medical applications.
Czasopismo
Rocznik
Tom
Strony
173--179
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
- Department of Biomaterials and Medical Devices Engineering
autor
- Department of Biomaterials and Medical Devices Engineering
autor
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
autor
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
autor
- Institute of Applied Geology, Faculty of Mining and Geology, Silesian University of Technology, Gliwice, Poland
autor
- Department of Biomaterials and Medical Devices Engineering
autor
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
autor
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
autor
- Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
Bibliografia
- [1] ARGARATE N., OLALDE B., ATORRASAGASTI G., VALERO J., CIFUENTES S.C., BENAVENTE R., LIEBLICH M., GONZALESCARRASCO J.L., Biodegradable bi-layered coating on polymeric orthopedic implants for controlled release of drugs, Mater Lett., 2014, 132, 193–195.
- [2] BASIAGA M., PASZENDA Z., WALKE W., KARASIŃSKI P., MARCINIAK J., Electrochemical Impedance Spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti-6Al-7Nb alloy, Information Technologies in Biomedicine, Advances in Intelligent Systems and Computing, Springer 2014, 284, 411–420.
- [3] BASIAGA M., WALKE W., PASZENDA Z., KAJZER A., The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium Grade 4, Mater Tehnol., 2016, 50(1), 153–158.
- [4] CIEŚLIK M., ENGVALL K., PAN J., KOTARBA A., Silane-parylene coating for improving corrosion resistance of stainless steel 316L implant material, Corros. Sci., 2011, 53(1), 296–301.
- [5] CZAJKOWSKA B., DOBRZYNSKI P., BERO M., J. Biomed. Mater Res. A, 2005, 75, 591–597.
- [6] DE ASSIS S.L., WOLYNEC S., COSTA I., Corrosion characterization of titanium alloys by electrochemical techniques, Electrochim. Acta, 2006, 51, 1815–1819.
- [7] DE MORAIS L., SIERRA G., PALERMO, E. ANDRADE L., MULLER C., MEYERS M., ELIAS C., Systemic levels of metallic ions released from orthodontic mini-implants, Am. J. Orthod. Dentofac., 135(4), 552–559.
- [8] FANG H.W., LI K.Y., SU T.L., YANG T.CH.K., CHANG J.S., LIN P.L., CHANG W.Ch., Dip coating assisted polylactic acid deposition on steel surface: Film thickness affected by drag force and gravity, Mater Lett., 2008, 62, 3739–3741.
- [9] IZMAN S., ABDUL-KADIR M.R., ANWAR M., NAZIM E.M., ROSLIZA R., SHAH A., HASSAN M.A., Surface Modification Techniques for Biomedical Grade of Titanium Alloys: Oxidation, Carburization and Ion Implantation Processes, in Titanium Alloys – Towards Achieving Enhanced Properties for Diversified Applications, Dr. A.K.M. Nurul Amin (ed.), 2012.
- [10] KACZMAREK M., Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods, Przegląd Elektrotechniczny, 2010, 86(12), 102–105.
- [11] KAJZER A., KAJZER W., DZIELICKI J., MATEJCZYK D., The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum, Acta Bioeng. Biomech., 2015, 2, 35–44, DOI: 10.5277/ ABB-00140-2014-02.
- [12] KIEL-JAMROZIK M., SZEWCZENKO J., BASIAGA M., NOWIŃSKA K., Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy, Acta Bioeng. Biomech., 2015, 1, 31–37.
- [13] LUKASZCZYK J., SMIGA-MATUSZOWICZ M., JASZCZ K., KACZMAREK M., Characterization of new biodegradable bone cement composition based on functional polysuccinates and methacrylic anhydriede, J. Biomat. Sci. Polym. E, 2007, 18(7), 825–842.
- [14] MACIEJOWSKA J., KASPERCZYK J., DOBRZYŃSKI P., BERO M., The influence of chain microstructure on hydrolytic degradation of glycolide/lactide copolymers used in drug delivery systems, J. Control Release, 2006, 116(2), e6–e8.
- [15] MAHAPATRO A., Metals for biomedical applications and devices, J. Biomateri Tissue Eng., 2012, 2(4), 259–268.
- [16] MARCINIAK J., SZEWCZENKO J., KAJZER W., Surface modification of implants for bone surgery, Arch. Metall. Mater., 2015, 60(3B), 13–19, DOI: 10.1515/amm-2015-0357.
- [17] OKAZAKI Y., GOTOH E., Comparison of metal release from various metallic biomaterials in vitro, Biomaterials, 2005, 26, 11–21.
- [18] OKAZAKI Y., GOTOH E., MANABE T., KOBAYASHI K., Comparasion of metal concentrations in rat tibia tissues with various metallic implants, Biomaterials, 2004, 25, 5913– 5920.
- [19] POSADOWSKA U., BRZYCHCZY-WŁOCH M., PAMUŁA E., Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment, Acta Bioeng. Biomech., 2015, 17, 41–48, DOI: 10.5277/ABB-00188-2014-02.
- [20] SZEWCZENKO J., NOWINSKA K., MARCINIAK J., Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing, Przegląd Elektrotechniczny, 2011, 87(3), 228–231.
- [21] SZYMONOWICZ M., RYBAK Z., WITKIEWICZ W., PEZOWICZ C., FILIPIAK J., In vitro hemocompatibility studies of (poly(Llactide) and poly(L-lactide-co-glycolide) as materials for bioresorbable stents manufacture, Acta Bioeng. Biomech., 2014, 16, 131–139, DOI: 10.5277/ABB-00055-2014-03.
- [22] TUREK A., KASPERCZYK J., JELONEK K., BORECKA A., JANECZEK H., LIBERA M., GRUCHLIK A., DOBRZYNSKI P., Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone, Acta Bioeng. Biomech., 2015, 17, 11–20, DOI: 10.5277/ABB-00210-2014-02.
- [23] WALKE W., PASZENDA Z., BASIAGA M., KARASIŃSKI P., KACZMAREK M., EIS study of SiO2 oxide film on 316L stainless steel for cardiac implants, Information Technologies in Biomedicine, Advances in Intelligent Systems and Computing, Springer, 2014, 284, 403–410.
- [24] ZINI E., SCANDOLA M., DOBRZYNSKI P., KASPERCZYK J., BERO M., Shape memory behavior of novel (L-lactide-glycolidetrimethylene carbonate) terpolymers, Biomacromolecules, 2008, 8(11), 3661–3667.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-191a7c71-2b90-49d0-b54b-bf4a677a5ef6