PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Additive manufacturing technology for modern packaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Technologia wytwarzania przyrostowego w produkcji nowoczesnych opakowań
Języki publikacji
EN
Abstrakty
EN
Appropriate packaging is essential to protect products from external contamination, physical damage or food spoilage. The latest innovations in the packaging industry are mainly limited to the development of new polymeric barrier materials and composite or green, environmentally friendly materials. However, recently, new active, and/or intelligent (smart) packaging is being developed that can extend the shelf life of a product, keep it in good condition and help control the quality of food products. This review presents the latest developments and applications of additive manufacturing in the production of smart food packaging.
PL
Odpowiednie opakowanie jest niezbędne, aby chronić produkty przed zanieczyszczeniami z zewnątrz, uszkodzeniami fizycznymi lub zepsuciem się żywności. Najnowsze osiągnięcia w branży opakowań ograniczają się głównie do opracowania nowych polimerowych materiałów barierowych oraz kompozytowych lub ekologicznych materiałów przyjaznych dla środowiska. Jednak ostatnio opracowywane są nowe opakowania aktywne i/lub inteligentne (smart), które mogą wydłużyć okres przydatności do spożycia produktu, utrzymać go w dobrym stanie i pomóc kontrolować jakość produktów spożywczych. W niniejszym artykule przedstawiono najnowsze osiągnięcia i zastosowania wytwarzania przyrostowego w produkcji inteligentnych opakowań do żywności.
Czasopismo
Rocznik
Tom
Strony
6--15
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • CompriseTec GmbH, Rödingsmarkt 20, 20459 Hamburg, Germany
  • CompriseTec GmbH, Rödingsmarkt 20, 20459 Hamburg, Germany
Bibliografia
  • [1] J.W. Han, L. Ruiz-Garcia, J.P. Qian, X.T. Yang, Food Packaging: A Comprehensive Review and Future Trends, Compr Rev Food Sci Food Saf 17(4) (2018) 860-877.
  • [2] S. Nida, J.A. Moses, C. Anandharamakrishnan, 3D printed food package casings from sugarcane bagasse: a waste valorization study, Biomass Conv Bioref (2021).
  • [3] M. Vanderroost, P. Ragaert, F. Devlieghere, B. De Meulenaer, Intelligent food packaging: The next generation, Trends in Food Science & Technology 39(1) (2014) 47-62.
  • [4] C. Chen, A. Chaudhary, A. Mathys, Nutritional and environmental losses embedded in global food waste, Resources, Conservation and Recycling 160 (2020) 104912.
  • [5] C.T. Tracey, A.L. Predeina, E.F. Krivoshapkina, E. Kumacheva, A 3D printing approach to intelligent food packaging, Trends in Food Science & Technology 127 (2022) 87-98.
  • [6] A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, M.I. Ul Haq, 3D printing - A review of processes, materials and applications in industry 4.0, Sustainable Operations and Computers 3 (2022) 33-42.
  • [7] X. Luo, Application of inkjet-printing technology in developing indicators/sensors for intelligent packaging systems, Current Opinion in Food Science 46 (2022) 100868.
  • [8] T. Pereira, J. V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing 30 (2019) 11-18.
  • [9] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Bus Horiz 60(5) (2017) 677-688.
  • [10] N. Hopkinson, P. Dicknes, Analysis of rapid manufacturing - using layer manufacturing processes for production, Proc Inst Mech Eng Part C: J Mech Eng Sci, 217(1) (2003)31-39.
  • [11] J. Gonzalez Ausejo, J. Rydz, M. Musioł, W. Sikorska, H. Janeczek, M. Sobota, J. Włodarczyk, U. Szeluga, A. Hercog, M. Kowalczuk, Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study, Polym. Degrad. Stab. 156 (2018) 100-110.
  • [12] ASTM ISO/ASTM52900-21: Additive manufacturing - General principles - Fundamentals and vocabulary, ISO/TC 261 Additive manufacturing (2021).
  • [13] D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, A. Clare, Materials for additive manufacturing, CIRP Ann 66(2) (2017) 659-681.
  • [14] J. Ghorbani, P. Koirala, Y.-L. Shen, M. Tehrani, Eliminating voids and reducing mechanical anisotropy in fused filament fabrication parts by adjusting the filament extrusion rate, J Manuf Process 80, (2022) 651-658.
  • [15] B. T. Riecken, S. T. Kaysser, Z. Kállai, J. Karsten, J. Hoppe, T. Konieczny, M. Hoppe, A. Lühring, P. Bitomsky, C. A. Keun, T. Schüppstuhl, B. Fiedler, Minimizing mechanical anisotropy in fused filament fabrication through innovative thermoset materials and additive manufacturing process, In: SAMPE Seattle Conference Proceeding, United States, April 2023.
  • [16] J. Włodarczyk, W. Sikorska, J. Rydz, B. Johnston, G. Jiang, I. Radecka, M. Kowalczuk, 3D processing of PHA containing (bio)degradable materials, Chapter 6, In: M. Koller (ed.), Current advances in biopolymer processing & characterization, Biomaterials - Properties, Production and devices series, Nova Science Publishers, New York, 2017, pp. 121-168.
  • [17] W. Sikorska, M. Musioł, K. Duale, J. Rydz, B. Zawidlak-Węgrzyńska, Biodegradable polymers. Value chain in the circular economy, CRC Press, Boca Raton, London, New York 2024.
  • [18] W. Sikorska, J. Richert, J. Rydz, M. Musioł, G. Adamus, H. Janeczek, M. Kowalczuk, Degradability studies of poly(L-lactide) after multireprocessing experiments in extruder, Polym Degrad Stabil 97 (2012) 1891-1897.
  • [19] J. Gonzalez Ausejo, J. Rydz, M. Musioł, W. Sikorska, M. Sobota, K. Włodarczyk, G. Adamus, H. Janeczek, I. Kwiecień, A. Hercog, B. Johnston, H.R. Khan, V. Kannappan, K.R. Jones, M.R. Morris, G. Jiang, I. Radecka, M. Kowalczuk, A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend, Polym Degrad Stab 152 (2018) 191-20.
  • [20] J. Rydz, W. Sikorska, M. Musioł, H. Janeczek, J. Włodarczyk, M. Misiurska-Marczak, J. Łęczycka, M. Kowalczuk, 3D-Printed polyester-based prototypes for cosmetic applications - Future directions at the forensic engineering of advanced polymeric materials, Materials 12(6), 994 (2019) 20 pages.
  • [21] J. Rydz, J. Włodarczyk, J. Gonzalez Ausejo, M. Musioł, W. Sikorska, M. Sobota, A. Hercog, K. Duale, H. Janeczek, Three-dimensional printed PLA and PLA/PHA dumbbell-shaped specimens: Mater ial defects and their impact on degradation behavior, Materials 13(8) (2020) 2005, 16 pages.
  • [22] E. Gkartzou, E.P. Koumoulos, C.A. Charitidis, Production and 3D printing processing of bio-based thermoplastic filament, Manufacturing Review 4 (2017) 1.
  • [23] J. Milde, R. Hrusecky, R. Zaujec, L. Morovic, A. Gorog, Research of ABS and PLA materials in the process of fused deposition modeling method, In: Proceedings of the 28th International DAAAM Symposium 1 (2017) 0812-0820.
  • [24] S.L. Marasso, M. Cocuzza, V. Bertana, F. Perrucci, A. Tommasi, S. Ferrero, L. Scaltrito, C.F. Pirri, PLA conductive filament for 3D printed smart sensing applications, Rapid Prototyping Journal 24(4) (2018) 739-743.
  • [25] P.H.M. Cardoso, R.R.T.P. Coutinho, F.R. Drummond, M.d.N. da Conceição, R.M.d.S.M. Thiré, Evaluation of Printing parameters on porosity and mechanical properties of 3D printed PLA/PBAT blend parts, Macromolecular Symposia 394(1) (2020) 2000157.
  • [26] M.C. Biswas, B.J. Tiimob, W. Abdela, S. Jeelani, V.K. Rangari, Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application, Food Packaging and Shelf Life 19 (2019) 104-113.
  • [27] S. Li, Y. Jiang, Y. Zhou, R. Li, Y. Jiang, M. Alomgir Hossen, J. Dai, W. Qin, Y. Liu, Facile fabrication of sandwich-like anthocyanin/chitosan/lemongrass essential oil films via 3D printing for intelligent evaluation of pork freshness, Food Chem 370 (2022) 131082.
  • [28] W. Zhou, Z. Wu, F. Xie, S. Tang, J. Fang, X. Wang, 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring, Carbohydr Polym 273 (2021) 118545.
  • [29] F.A. Cruz Sanchez, H. Boudaoud, S. Hoppe, M. Camargo, Polymer recycling in an open-source additive manufacturing context: Mechanical issues, Additive Manufacturing 17 (2017) 87-105.
  • [30] K. Mikula, D. Skrzypczak, G. Izydorczyk, J. Warchol, K. Moustakas, K. Chojnacka, A. Witek-Krowiak, 3D printing filament as a second life of waste plastics-a review, Environ Sci Pollut Res Int 28(10) (2021) 12321-12333.
  • [31] T. Janjarasskul, P. Suppakul, Active and intelligent packaging: The indication of quality and safety, Crit Rev Food Sci Nutr 58(5) (2018) 808-831.
  • [32] C. Vilela, M. Kurek, Z. Hayouka, B. Röcker, S. Yildirim, M.D.C. Antunes, J. Nilsen-Nygaard, M.K. Pettersen, C.S.R. Freire, A concise guide to active agents for active food packaging, Trends in Food Science & Technology 80 (2018) 212-222.
  • [33] H. Yousefi, H.M. Su, S.M. Imani, K. Alkhaldi, M.F. CD, T.F. Didar, Intelligent food packaging: A review of smart sensing technologies for monitoring food quality, ACS Sensors 4(4) (2019) 808-821.
  • [34] R. Priyadarshi, P. Ezati, J.-W. Rhim, Recent advances in intelligent food packaging applications using natural food colorants, ACS Food Science & Technology 1(2) (2021) 124-138.
  • [35] P. Kumar, H.W. Reinitz, J. Simunovic, K.P. Sandeep, P.D. Franzon, Overview of RFID technology and its applications in the food industry, J Food Sci 74(8) (2009) R101-6.
  • [36] D. Yusufu, R. Han, A. Mills, 3D printed O2 indicators, Analyst 145(12) (2020) 4124-4129.
  • [37] J.G. Y. Shafiq, S.V. Georgakopoulos, H. Kim, C.P. Ambulo, T.H. Ware, A novel passive RFID temperature sensor, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (2018) 1863-1864.
  • [38] L. Zheng, G. Cai, S. Wang, M. Liao, Y. Li, J. Lin, A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging, Biosens Bioelectron 124-125 (2019) 143-149.
  • [39] S. Wang, L. Zheng, G. Cai, N. Liu, M. Liao, Y. Li, X. Zhang, J. Lin, A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing, Biosens Bioelectron 140 (2019) 111333.
  • [40] J. Wu, M.-J. Yin, K. Seefeldt, A. Dani, R. Guterman, J. Yuan, A.P. Zhang, H.-Y. Tam, In situ μ-printed optical fiber-tip CO2 sensor using a photo-crosslinkable poly(ionic liquid), Sensors and Actuators B: Chemical 259 (2018) 833-839.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19187fd6-5e90-4f2b-b0c9-6b7941caff56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.