PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical evaluation of quasi-static indentation behaviour of laminates with polypropylene matrix

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the damage process of composite laminates subjected to low-velocity quasi-static indentation (QSI) load. The laminates were prepared using the compression moulding technique. The composites were made from orthotropic layers with E-glass or steel fibres and a polypropylene matrix. The quasi-static indentation tests were carried out at three levels of indentation energy under low-velocity. The experimental results reveal that using steel fibres increases the perforation threshold, which alludes to the importance of the fibre type in delineating damage regions. In contrast, the evolution of the damage and the perforation resistance of glass fibre reinforced laminates is somewhat different. A numerical model based on a finite element program was developed to understand the mechanisms of damage evolution in the laminates. It involves implementing the Matzenmiller-Lubliner-Taylor (MLT) damage model. A comparison between the experimental and numerical results was also made.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • National Centre of Studies and Integrated Research on Building Engineering CNERIB, Algiers, Algeria
autor
  • National Centre of Studies and Integrated Research on Building Engineering CNERIB, Algiers, Algeria
autor
  • Department of Mechanical Engineering, University M’hamed Bougara Boumerdes, Algeria
Bibliografia
  • [1] Abdullah M.R., Cantwell W.J., The impact resistance of polypropylene-based fibre-metal laminates, Composites Science and Technology 2006, 66, 1682-1693.
  • [2] Bieniaś J., Jakubczak P., Zheng J.Q., Low velocity impact resistance of aluminum/carbon-epoxy fiber metal laminates, Composite Theory and Practice 2012, 12(3), 193-197.
  • [3] Shuchang J.Q., Xiaohu Y., Xiaoqing Z., Delamination prediction in composite laminates under low-velocity impact, Composite Structures 2015, 15, 290-298.
  • [4] Jakubczak P., Bieniaś J., Surowska B., Analysis of load-displacement curves and energy absorption relations of selected fibre metal laminates subjected to low-velocity impact, Composite Theory and Practice 2014, 14(3), 123-127.
  • [5] Sutherland L.S., Soares C.G., Effect of laminate thickness and of matrix resin on the impact of low fibre-volume, woven roving E-glass composites, Composites Science and Technology 2004, 64, 1691-1700.
  • [6] Olsson R., Mass criterion for wave controlled impact response of composite plates, Composites Part A 2000, 31, 879-887.
  • [7] Selmy A.I., El-baky M.A.A., Hegazy D.A., Mechanical properties of inter-ply hybrid composites reinforced with glass and polyamide fibers, Journal Thermoplastic Composite Material 2019, 32, 267-293.
  • [8] Russo P., Acierno D., Simeoli D., Iannace S., Sorrentino L., Flexural and impact response of woven glass fibre fabric/polypropylene composites, Composites Part B: Engineering 2013, 54, 415-421.
  • [9] Carrillo J., Cantwell G., Mechanical properties of a novel fibre-metal laminate based on a polypropylene composite, Mechanics of Materials 2009, 41(7), 828-838.
  • [10] Onur Bozkurt M., Parnas L., Coker D., Simulation of drop-weight impact test on composite laminates using finite element method, Procedia Structural Integrity 2019, 21, 206-214.
  • [11] Mitrevski T., Marshall I.H., Thomson R.S., Jones R., Low-velocity impacts on preloaded GFRP specimens with various impactor shapes, Composite Structures 2004, 76(3), 209-217.
  • [12] Carrillo J.G., Gonzalez-Canche N.G., Johnson F., Cortes P., Low velocity impact response of fibre metal laminates based on aramid fibre reinforced polypropylene, Composites Structures 2019, 220, 708-716.
  • [13] Simeoli G., Acierno D., Meola D., Sorrentino L., Iannace S., Russo P., The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates, Composites: Part B 2014, 62, 88-96.
  • [14] Yudhanto A., Wafai H., Lubineau G., Goutham S., Mulle M., Yaldiz R., Verghese N., Revealing the effects of matrix behavior on low-velocity impact response of continuous fiber-reinforced thermoplastic laminates, Composite Structures 2018, 18, 334-72.
  • [15] Davies G., Olsson R., Impact on composite structures, The Aeronautical Journal 2004, 108, 541-563.
  • [16] Zulkafli N., Sivakumar D.M., Sit H.S., Fadzullah M., Razali N., Quasi and dynamic impact performance of hybrid cross-ply banana/glass fibre reinforced polypropylene composites, Materials Research Express 2019, 12, 125-344.
  • [17] Bouvet C., Rivallant S., Barrau J.J., Low velocity impact modeling in composite laminates capturing permanent indentation, Composites Science and Technology 2012, 72, 1977-1988.
  • [18] Santiago R.C., Cantwell W.J., Jones N., Alves M., The modelling of impact loading on thermoplastic fibre-metal laminates, Composite Structures 2018, 189, 228-238.
  • [19] Zhoua J., Wen P., Wang S., Numerical investigation on the repeated low-velocity impact behavior of composite laminates, Composites Part B: Engineering 2020, 185, 107-771.
  • [20] Warren C., Roberto A., Lopez A., Senthil S., Harun V., Bayraktar H., Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing, Composites Part B 2016, 84, 266-276.
  • [21] Tabiei A., Zhang W., Composite laminate delamination simulation and experiment: A review of recent development, Applied Mechanics Reviews 2018, 70(3), 030801.
  • [22] Amaro P., Reis P., De Moura M., Santos J.B., Influence of the specimen thickness on low velocity impact behavior of composites, Journal of Polymer Engineering 2012, 53-58.
  • [23] Dogan A., Single and repeated low-velocity impact response of E-glass fiber-reinforced epoxy and polypropylene composites for different impactor shapes, Thermoplastic Composite Materials 2019, 1-17.
  • [24] Shah S.Z.H., Karuppanan S., Megat-Yusoff P.S.M., Sajid Z., Impact resistance and damage tolerance of fiber reinforced composites: A review, Composite Structures 2019, 2017, 100-121.
  • [25] Matzenmiller A., Lubliner J., Taylor R.A., Constitutive model for anisotropic damage in fibre composites, Mechanics of Materials 1995, 20(2), 125-152.
  • [26] Mokhtari A., Ould Ouali M., Tala-Ighil N., Damage modelling in thermoplastic composites reinforced with natural fibres under compressive loading, International Journal of Damage Mechanics 2015, 24(8), 1-22.
  • [27] Guo W., Xue P., Yang J., Nonlinear progressive damage model for composite laminates used for low velocity impact, Applied Mathematics and Mechanics 2013, 34, 1145-1154.
  • [28] Mahdad M., Ait Saada A., Belaidi I., Mokhtari A., Benidir A., Damage modelling in thermoplastic laminates reinforced with steel and glass fibres under quasi-static indentation loading at low-velocity, Advanced Composite Letters 2018, 27(6), 251-260.
  • [29] Zhu Q., Yu Z., A perturbation-based model for the prediction of responses involving delamination during small mass impacts on orthotropic composite plates, Composites Science and Technology 2021, 208, 108754.
  • [30] Reyes G., Gupta S., Manufacturing and mechanical properties of thermoplastic hybrid laminates based on DP500 steel, Composites Part A: Applied Science and Manufacturing 2009, 40(2), 176-183.
  • [31] Hashin Z., Failure criteria for unidirectional fibre composites, Journal of Applied Mechanics 1980, 47, 321-329.
  • [32] Tsai S., Wu E., A general theory of strength for anisotropic materials, Journal of Composite Materials 1971, 5, 58-80.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-191566d9-218e-42e5-948b-6e6d9cd4f5c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.