PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradable polymer coatings on Ti6Al7Nb alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the influence of long term exposure to Ringer’s solution of biodegradable polymer coatings containing an active substance on the Ti6Al7Nb alloy substrate on the physical and chemical properties of the coatings and the degradation process of the metal substrate. The studies used poly(L-lactide-co-trimethylene carbonate) P(L/TMC), poly(L-lactide-co-trimethylene carbonate-glycolide) P(L/TMC/G) and poly(D,L-lactide-glycolide) (PLGA) coatings applied to the anodically oxidized Ti6Al7Nb alloy by means of dipping method (1, 2 and 3 dips). The polymer coatings contained ciprofloxacin. Roughness and wettability tests were carried out on the substrate and polymer coatings, the pitting corrosion resistance of the substrate and samples with polymer coating was determined, the number of metallic ions released to the solution from the coated and uncoated samples was determined as well as the adhesion of polymer coatings. The research was supplemented by microscopic observations. The results of the research indicate different influence of exposure to Ringer’s solution on the physical and chemical properties of biodegradable polymer coatings containing ciprofloxacin and the course of the degradation process of the metal substrate.
Rocznik
Strony
83--92
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Zabrze, Poland
  • Faculty of Mining and Geology, Department of Applied Geology, Gliwice, Poland
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
  • Centre of Polymer and Carbon Materials of the Polish Academy of Sciences Zabrze, Poland
Bibliografia
  • [1] BASIAGA M., KAJZER W., WALKE W. et al., Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants, Materials Science and Engineering C – Materials for Biological Applications, 2016, 68, 851–860.
  • [2] BULBUL E., AKSAKAL B., Synthesizing and characterization of nano-graphene oxide-reinforced hydroxyapatite coatings on laser treated Ti6Al4V surfaces, Acta Bioeng. Biomech., 2017, 19 (4), 171–180.
  • [3] GRIJPMA D.W., Poly(trimethylene carbonate) polymers and networks, Synthesis, properties and medical applications, J. Bioremediat. Biodegrad., 2017, 8 (6), 27.
  • [4] JAWORSKA J., JELONEK K., KAJZER W., SZEWCZENKO J., KACZMARCZYK B., MARCINKOWSKI A., JANECZEK H., PASTUSIAK M., BASIAGA M., KASPERCZYK J., Comparison of biodegradable poly(glycolide-ε-caprolactone) and poly(glycolide-caprolactone-d.l-lactide) coatings enriched with ciprofloxacin formed on Ti6Al4V alloy, Polym. Degrad. Stab., 2018, 155, 136–144.
  • [5] JAWORSKA J., JELONEK K., SOBOTA M., KASPERCZYK J., DOBRZYŃSKI P., MUSIAL-KULIK M., SMOLA-DMOCHOWSKA A., JANECZEK H., JARZĄBEK B., Shape-memory bioresorbable terpolymer composite with antirestenotic drug, J. Appl. Polym. Sci., 2015, 132 (17).
  • [6] JELONEK K., JAWORSKA J., PASTUSIAK M., SOBOTA M., WLODARCZYK J., KARPETA-JARZĄBEK P., KACZMARCZYK B., KASPERCZYK J., DOBRZYŃSKI P., Effect of vascular scaffold composition on release of sirolimus, European Journal of Pharmaceutics and Biopharmaceutics, 2918, 132, 41–49.
  • [7] JELONEK K., KASPERCZYK J., Polyesters and polyester carbonates for controlled drug delivery, Part I. Polymers, 2013, 58, 654–662.
  • [8] JONES D., Pharmaceutical Applications of Polymers for Drug Delivery, Rapra Technology Limited, 2004.
  • [9] KAJZER W., JAWORSKA J., JELONEK K., SZEWCZENKO J., KAJZER A., NOWIŃSKA K., HERCOG A., KACZMAREK M., KASPERCZYK J., Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings, Eksploatacja i Niezawodność, Maintenance and Reliability, 2018, 20, 130–138.
  • [10] KAJZER W., JAWORSKA J., JELONEK K., SZEWCZENKO J., NOWIŃSKA K., KAJZER A., Effect of sterilization and long-term exposure to artificial urine on corrosion behavior of metallic biomaterials with poly(glicolide-co-caprolactone) coatings, [in:] M. Gzik, E. Tkacz, Z. Paszenda, E. Piętka (Eds.), Innovations in biomedical engineering, Springer International Publishing. Innovations in Biomedical Engineering, 2018, 391–398.
  • [11] KAZEK-KĘSIK A, NOSOL A., PŁONKA J., ŚMIGA-MATUSZOWICZ M., GOŁDA-CĘPA M., KROK-BORKOWICZ M., BRZYCHCZY-WŁOCH M., PAMUŁA E., SIMKA W., PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications, Materials Science and Engineering C, 2019, 94, 998–1008.
  • [12] KIEL M., SZEWCZENKO J., MARCINIAK J., NOWIŃSKA K., Electrochemical properties ofTi-6Al-4V ELI alloy after anodization, [in:] E. Piętka, J. Kawa (Eds.), Lecture Notes in Computer Science, Lecture Notes in Bioinformatics, Springer, 2012, 7339, 369–378.
  • [13] KIEL-JAMROZIK M., SZEWCZENKO J., BASIAGA M., NOWIŃSKA K., Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy, Acta Bioeng. Biomech., 2015, 17(1), 31–37.
  • [14] LI S., VERT G.M., Structure-property relationship in the case of the degradation of massive poly(α-hydroxyacids) in aqueous media, Journal of Materials Science, Materials in Medicine, 1990, 1, 131–139.
  • [15] LI S., VERT G.M., Structure-property relationship in the case of the degradation of massive poly(α-hydroxyacids) in aqueous media, Journal of Materials Science, Materials in Medicine, 1990, 1, 123–130.
  • [16] NIINOMI M., Metallic biomaterials, J. Artif. Organs., 2008, 11, 105–110.
  • [17] POSADOWSKA U., BRZYCHCZY-WŁOCH A., PAMUŁA E., Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment, Acta Bioeng. Biomech., 2015, 17 (3).
  • [18] PRAKASAM M., LOCS J., SALMA-ANCANE K. et al., Biodegradable Materials and Metallic Implants. A Review, Journal of Functional Biomaterials. 8, 4 (2017) 12.
  • [19] DOBRZYNSKI P., KASPERCZYK J., Synthetic biodegradable medical polyesters: Poly(trimethylene carbonate) in Science and Principles of Biodegradable and Bioresorbable, Medical Polymers Materials and Properties, 2017, 107–152.
  • [20] SEAL B.L., OTERO T.C., Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng. R. Rep., 2001, 34, 147.
  • [21] SZEWCZENKO J., KAJZER W., GRYGIEL-PRADELOK M., JAWORSKA J., JELONEK K., NOWIŃSKA K., GAWLICZEK M., LIBERA M., MARCINKOWSKI A., KASPERCZYK J., Corrosion resistance of PLGA-coated biomaterials, Acta Bioeng. Biomech., 2017, 19, 1, 173–179.
  • [22] SZEWCZENKO J., MARCINIAK J., TYRLIK-HELD J., NOWIŃSKA K., Effect of surface pretreatment on corrosion resistance of anodically oxidized Ti6Al7Nb alloy, [in:] E. Piętka, J. Kawa (Eds.), Lecture Notes in Computer Science, Vol. Lecture Notes in Bioinformatics. Springer, 2012, 7339, 398–411.
  • [23] SZEWCZENKO J., NOWIŃSKA K., MARCINIAK J., Influence of initial surface treatment on corrosion resistance of Ti6Al4V ELI alloy after anodizing, Przegląd Elektrotechniczny, 2011, 87, 228–231.
  • [24] TUREK A., KASPERCZYK J., JELONEK K., BORECKA A., JANECZEK H., LIBERA M., GRUCHLIK A., DOBRZYŃSKI P., Thermal properties and morphology changes in degradation process of poly(lactide-co-glycolide) matrices with risperidone, Acta Bioeng. Biomech., 2015, 17 (1).
  • [25] WANG M., Surface Modification of Metallic Biomaterials for Orthopaedic Applications, Materials Science Forum, 2009, 618, 619, 285–290.
  • [26] WEN C., Surface Coating and Modification of Metallic Biomaterials, Elsevier, 2015.
  • [27] ZHANG Z., GRIJPMA D.W., FEJEN J., Creep-resistant porous structures based on stereocomplex forming triblock copolymers of 1,3-trimethylene carbonate and lactides, Journal of Materials Science, Materials in Medicine, 2004, 15, 381–385.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-190cad4a-89d2-4133-8e14-1a0f3e437812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.