PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser Powder Bed Fusion and Selective Laser Melted Components Investigated with Highly Penetrating Radiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methods of incremental manufacturing, i.e. 3D printing, have been experiencing significant growth in recent years, both in terms of the development of modern technologies dedicated to various applications, and in terms of optimizing the parameters of the process itself so as to ensure the desired mechanical and strength properties of the parts produced in this way. High hopes are currently being pinned on the use of highly penetrating types of radiation, i.e. synchrotron and/or neutron radiation, for quantitative identification of parameters characterizing objects produced by means of 3D printing. Thanks to diffraction methodologies, it is feasible to obtain input information to optimize 3D printing procedures not only for finished prints but also to monitor in situ printing processes. Thanks to these methodologies, it is possible to obtain information on parameters that are critical from the perspective of application of such obtained elements as stresses generated during the printing procedure itself as well as residual stresses after printing. This parameter, from the point of view of tensile strength, compression strength as well as fatigue strength, is crucial and determines the possibility of introducing elements produced by incremental methods into widespread industrial use.
Rocznik
Tom
Strony
81--98
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
  • [1] 3D Systems. (2022). Our story. Retrieved 2022-02-14, from https://es.3dsystems.com/our-story.
  • [2] International Organization for Standardization. (2021). ISO/ASTM 52900(en), Additive manufacturing - General principles - Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en
  • [3] Savolainen, J. and Collan, M. (2020). How Additive Manufacturing Technology Changes Business Models? - Review of Literature. Additive Manufacturing, vol. 32, p. 101070. DOI: 10.1016/j.addma.2020.101070.
  • [4] Withers, P.J., Turski, M., Edwards, L., Bouchard, P.J. and Buttle, D.J. (2007). Recent advances in residual stress measurement. International Journal of Pressure Vessels and Piping, vol. 85(3), pp. 118-127. DOI: 10.1016/j.ijpvp.2007.10.007.
  • [5] Strantza, M. et al. (2018). Coupled experimental and computational study of residual stresses in additively manufactured Ti-6Al-4V components. Materials Letters, vol. 231, pp. 221-224. DOI: 10.1016/j.matlet.2018.07.141.
  • [6] Mishurova, T., Artzt, K., Haubrich, J., Requena, G. and Bruno, G. (2019). Exploring the Correlation between Subsurface Residual Stresses and Manufacturing Parameters in Laser Powder Bed Fused Ti-6Al-4V. Metals, vol. 9 (2), p. 261. DOI: 10.3390/met9020261.
  • [7] Ganeriwala, R.K. et al. (2019). Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing, vol. 27, pp. 489-502. DOI: 10.1016/j.addma.2019.03.034.
  • [8] Bodner, S. C. et al. (2020). Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, vol. 32, p. 101027. DOI: 10.1016/j.addma.2019.101027.
  • [9] Mishurova, T. et al. (2020). Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V. Metallurgical and Materials Transactions A, vol. 51(6), pp. 3194-3204. DOI: 10.1007/s11661-020-05711-6.
  • [10] Serrano-Munoz, I. et al. (2021). On the interplay of microstructure and residual stress in LPBF IN718. Journal of Materials Science, vol. 56(9), pp. 5845-5867. DOI: 10.1007/s10853-020-05553-y.
  • [11] Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Journal of Applied Mathematics and Mechanics / Zeitschrift Angewandte Mathematik und Mechanik. DOI: 10.1002/zamm.19290090104.
  • [12] Kröner, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Physik, vol. 151(4), pp. 504-518. DOI: 10.1007/BF01337948.
  • [13] Artzt, K. et al. (2020). Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V. Materials, vol. 13(15), p. 3348. DOI: 10.3390/ma13153348.
  • [14] Calta, N.P. et al. (2020). Cooling dynamics of two titanium alloys during laser powder bed fusion probed with in situ X-ray imaging and diffraction. Materials & Design, vol. 195, p. 108987. DOI: 10.1016/j.matdes.2020.108987.
  • [15] Aminforoughi, B., Degener, S., Richter, J., Liehr, A. and Niendorf, T. (2021). A Novel Approach to Robustly Determine Residual Stress in Additively Manufactured Microstructures Using Synchrotron Radiation. Advanced Engineering Materials, vol. 23(11), p. 2100184. DOI: 10.1002/adem.202100184.
  • [16] Mishurova, T. et al. (2017). An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V. Materials, vol. 10(4), p. 348. DOI: 10.3390/ma10040348.
  • [17] Mishurova, T. et al. (2018). The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts. Metallurgical and Materials Transactions A, vol. 49(7), pp. 3038-3046. DOI: 10.1007/s11661-018-4653-9.
  • [18] Mishurova, T. et al. (2019). New aspects about the search for the most relevant parameters optimizing SLM materials. Additive Manufacturing, vol. 25, pp. 325-334. DOI: 10.1016/j.addma.2018.11.023.
  • [19] Hocine, S. et al. (2020). Operando X-ray diffraction during laser 3D printing. Materials Today, vol. 34, pp. 30-40. DOI: 10.1016/j.mattod.2019.10.001.
  • [20] Wu, A.S., Brown, D.W., Kumar, M., Gallegos, G.F. and King, W.E. (2014). An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metallurgical and Materials Transactions A, vol. 45(13), pp. 6260-6270. DOI: 10.1007/s11661-014-2549-x.
  • [21] An, K., Yuan, L., Dial, L., Spinelli, I., Stoica, A.D. and Gao, Y. (2017). Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Materials & Design, vol. 135, pp. 122-132. DOI: 10.1016/j.matdes.2017.09.018.
  • [22] Gloaguen, D. et al. (2020). Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements. Metallurgical and Materials Transactions A, vol. 5(2), pp. 951-961. DOI: 10.1007/s11661-019-05538-w.
  • [23] Ulbricht, A. et al. (2020). Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L. Metals, vol. 10(9). DOI: 10.1007/s11661-019-05538-w.
  • [24] Goel, S. et al. (2020). Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment. Materials & Design, vol. 195, p. 109045. DOI: 10.1016/j.matdes.2020.109045.
  • [25] Clausen, B. et al. (2020). Complementary Measurements of Residual Stresses Before and After Base Plate Removal in an Intricate Additively-Manufactured Stainless-Steel Valve Housing. Additive Manufacturing, vol. 36, p. 101555. DOI: 10.1016/j.addma.2020.101555.
  • [26] Pant, P. et al. (2020). Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses. Additive Manufacturing, vol. 36, p. 101501. DOI: 10.1016/j.addma.2020.101501.
  • [27] Zhang, X.X. et al. (2021). Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Materials & Design, vol. 198, p. 109339. DOI: 10.1016/j.matdes.2020.109339.
  • [28] Fritsch, T. et al. (2021). On the determination of residual stresses in additively manufactured lattice structures. Journal of Applied Crystallography, vol. 54(1), pp. 228-236. DOI: 10.1107/S1600576720015344.
  • [29] Nadammal, N. et al. (2021). Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Additive Manufacturing, vol. 38, p. 101792. DOI: 10.1016/j.addma.2020.101792.
  • [30] Serrano-Munoz, I. et al. (2021). Scanning Manufacturing Parameters Determining the Residual Stress State in LPBF IN718 Small Parts. Advanced Engineering Materials, vol. 23(7), p. 2100158. DOI: 10.1002/adem.202100158.
  • [31] Busi, M. et al. (2021). A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening. Scientific Reports, vol. 11(1), p. 14919. DOI: 10.1038/s41598-021-94455-3.
  • [32] Serrano-Munoz, I. et al. (2021). The Importance of Subsurface Residual Stress in Laser Powder Bed Fusion IN718. Advanced Engineering Materials, 2100895. DOI: 10.1002/adem.202100895.
  • [33] Reid, M. (2017). Residual Stresses in Selective Laser Melted Components of Different Geometries. Materials Research Proceedings, vol. 2, pp. 383-388. DOI: 10.21741/9781945291173-65.
  • [34] Kim, D.-K., Hwang, J.-H., Kim, E.-Y., Heo, Y.-U., Woo, W. and Choi, S.-H. (2017). Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. Journal of Alloys and Compounds, vol. 714, pp. 687-697. DOI: 10.1016/j.jallcom.2017.04.264.
  • [35] Nadammal, N. et al. (2017). Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Materials & Design, vol. 134, pp. 139-150. DOI: 10.1016/j.matdes.2017.08.049.
  • [36] Andersson, L.S. (2018). Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction. Materials Research Proceedings, vol. 4, pp. 73-78. DOI: 10.21741/9781945291678-11.
  • [37] Syed, A.K. et al. (2019). An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V. Materials Science and Engineering: A, vol. 755, pp. 246-257. DOI: 10.1016/j.msea.2019.04.023.
  • [38] Kromm, A. (2018). Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy. Materials Research Proceedings, vol. 6, pp. 259-264. DOI: 10.21741/9781945291890-41.
  • [39] Phan, T.Q. et al. (2019). Elastic Residual Strain and Stress Measurements and Corresponding Part Deflections of 3D Additive Manufacturing Builds of IN625 AM-Bench Artifacts Using Neutron Diffraction, Synchrotron X-Ray Diffraction, and Contour Method., vol. 8(3), pp. 318-334. DOI: 10.1007/s40192-019-00149-0.
  • [40] Liu, S. and Shin, Y.C. (2019). Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design, vol. 164, p. 107552. DOI: 10.1016/j.matdes.2018.107552.
  • [41] Hosseini, E. and Popovich, V.A. (2019). A review of mechanical properties of additively manufactured Inconel 718. Additive Manufacturing, vol. 30, p. 100877. DOI: 10.1016/j.addma.2019.100877.
  • [42] Bajaj, P., Hariharan, A., Kini, A., Kürnsteiner, P., Raabe, D. and Jägle, E.A. (2020). Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering: A, vol. 772, p. 138633. DOI: 10.1016/j.msea.2019.138633.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19083c42-b650-4628-a191-cec733f16b63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.