PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of Zinc from Steelmaking Flue Dust by Hydrometallurgical Route

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industrial steelmaking (EAF) flue dust was characterized in terms of chemical and phase compositions, leaching behaviour in 20% sulphuric acid solution as well as leaching thermal effect. Waste product contained about 43% Zn, 27% Fe, 19% O, about 3% Pb and Mn and lesser amounts of other elements (Ca, Si, Mo, etc.). It consisted mainly of oxide-type compounds of iron and zinc. Dissolution of metals (Zn, Fe, Mn) from the dust was determined in a dependence of solid to liquid ratio (50-200 g/L), temperature (20-80°C) and leaching time (up to 120 min). The best result of 60% zinc recovery was obtained for 50 g dust/L and a temperature of 80°C. Leaching of the material was an exothermic process with a reaction heat of about –318 kJ/kg. Precipitation purification of the solution was realized using various ratios of H2 O2 to NH3aq . A product of this stage was hydrated iron(III) oxide. Final solution was used for zinc electrowinning. Despite that pure zinc was obtained the highest cathodic current efficiency was only 40%.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] www.zinc.org, accessed: 17.02.2019.
  • [2] World steel recycling in figures 2013-2017, Bureau of International Recycling, Ferrous Division, Brussels (2018).
  • [3] J. Antrekowitsch, S. Steinlechner, A. Unger, G. Rösler, R. Pichler, R. Rumpold, Zinc and Residue Recycling, in: Handbook of recycling, Elsevier, 113-124 (2014).
  • [4] 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council (2014).
  • [5] M. G. Sebag, C. Korzenowski, A. M. Bernardes, A. C. Vilela, J. Hazard. Mater. 166, 670-675 (2009).
  • [6] T. A. Lytaeva, A. E. Isakov, J. Ecol. Eng. 18 (3), 37-42 (2017).
  • [7] C. Sikalidis, M. Mitrakas, J. Environ. Sci. Health Part A: Toxic/Hazard Subst. Environ. Eng. 41 (9), 1943-1954 (2006).
  • [8] T. Lis, K. Nowacki, Steel Res. Int. 83 (9), 842-851 (2012).
  • [9] C. M. F. Vieira, R. Sanchez, S. N. Monteiro, N. Lalla, N. Quaranta, J. Mater. Res. Technol. 2 (2), 88-92 (2013).
  • [10] T. Sofilić, A. Rastovčan-Mioč, Š. Cerjan-Stefanović, V. Novosel-Radović, M. Jenko, J. Hazard. Mater. B109, 59-70 (2004).
  • [11] T. Havlik, B. Friedrich, S. Stopić, World Metall. Erzmetall. 57(2), 113-120 (2004).
  • [12] F. Kukurugya, T. Vindt, T. Havlik, Hydrometall. 154, 20-32 (2015).
  • [13] Š. Langová, D. Matýsek, Hydrometall. 101, 171-173 (2010).
  • [14] P. Oustadakis, P. E. Tsakiridis, A. Katsiapi, S. Agatzini-Leonardou, J. Hazard. Mater. 179, 1-7 (2010).
  • [15] R. A. Shawabkeh, Hydrometall. 104, 61-65 (2010).
  • [16] P. Halli, J. Hamuyuni, H. Revitzer, M. Lundström, J. Clean. Prod. 164, 265-276 (2017).
  • [17] A. J. B. Dutra, P. R. P. Paiva, L. M. Tavares, Min. Eng. 19, 478-485 (2006).
  • [18] G. Orhan, Hydrometall. 78, 236-245 (2005).
  • [19] A. A. Ghani, J. Saleem, Z. A. Hameed, H. Lal, M. Shoaib, Pak. J. Anal. Environ. Chem. 17 (1), 33-37 (2016).
  • [20] P. Palimąka, S. Pietrzyk, M. Stępień, K. Ciećko, I. Nejman, Metals, 8, 547 (2018).
  • [21] X. Lin, Z. Peng, J. Yan, Z. Li, J-Y. Hwang, Y. Zhang, G. Li, T. Jiang, J. Clean. Prod. 149, 1079-1100 (2017).
  • [22] A. Bakkar, J. Hazard. Mater. 280, 191-199 (2014).
  • [23] N. Leclerc, E. Meux, J.-M. Lecuire, J. Hazard. Mater. B91, 257-270 (2002).
  • [24] Š. Langová, J. Riplová, S. Vallová, Hydrometall. 87, 157-162 (2007).
  • [25] P. E. Tsakiridis, P. Oustadakis, A. Katsiapi, S. Agatzini-Leonardou, J. Hazard. Mater. 179, 8-14 (2010).
  • [26] P. Xanthopoulos, S. Agatzini-Leonardou, P. Oustadakis, P. E. Tsakiridis, J. Environ. Chem. Eng. 5, 3550-3559 (2017).
  • [27] R. A. Robie, B. S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. United States Government Printing Office, Washington (1995).
  • [28] J. Zienkowicz, I. Senderacka, W. Wallmoden (Eds.), Kalendarz chemiczny, PWT, Warszawa (in Polish) (1954).
  • [29] T. Havlik, B. Vidor e Souza, A. M. Bernardes, I. A. H. Schneider, A. Miskufova, J. Hazard. Mater. B135, 311-318 (2006).
  • [30] T. Havlik, M. Turzakova, S. Stopic, B. Friedrich, Hydrometall. 77, 41-50 (2005).
  • [31] T. Bieszczad, S. Sanak-Rydlewska, Physicochem. Probl. Min. Process. 35, 181-193 (2001).
  • [32] O. Berkh, Y. Shacham-Diamand, E. Gileadi, J. Electrochem. Soc. 155 (10), F223-F229 (2008).
  • [33] K. Brunelli, M. Dabalà, Int. J. Miner. Metall. Mater. 22, 353-362 (2015).
  • [34] M. Al-Harahsheh, S. W. Kingman, Hydrometall. 73 (3-4), 189-203 (2004).
Uwagi
EN
1. This work was carried out in a cooperation with OKSYMET Sp. z.o.o. (Skawina, Poland).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1906c264-e4cc-4f8f-b0d5-248a5ff837d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.