Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most important dynamic phenomenon recognized as dangerous to seagoing ships is the resonance gain of rolling. This may occur due to nonlinearity of ship response in resonance conditions, i.e. when the encounter wave frequency is similar to the natural frequency of ship roll motion. Such coincidence should be avoided therefore shipmaster steers clear of some configurations of speed and course resulting in potential synchronous rolling. Nowadays, according to the IMO Intact Stability Code the natural period of roll is determined with the use of very simplified GM-based formula. The paper deals with the problem of more sophisticated prediction of ship’s natural rolling frequency with the use of the one degree-of-freedom roll equation with regard to nonlinear restoring moment. A special emphasis is put on the damping coefficient modelling which remains one of the crucial issues in terms of rolling simulation. Two typical approaches to the damping coefficient estimation are tested, the linear and the nonlinear one according to Ikead’s method. The set of ship roll simulations is carried out for a wide range of excitation frequency and a variety of exciting moment. The results of computation focused on the natural frequency of ship roll prediction are compared to assess the influence of damping model selection.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
289--296
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Gdynia Maritime University Faculty of Navigation, Department of Ship Operation Jana Pawła II Avenue 3, 81-345 Gdynia, Poland tel.:+48 586901174
autor
- Gdynia Maritime University Faculty of Navigation, Department of Ship Operation Jana Pawła II Avenue 3, 81-345 Gdynia, Poland tel.:+48 586901174
Bibliografia
- [1] Błocki, W., Bezpieczeństwo statecznościowe statku w sytuacjach rezonansowych, Pol. Gdańska, Monografie 19, Gdansk 2000.
- [2] Bulian, G., Francescutto, A., Effect of roll modelling in beam waves under multi-frequency excitation, Ocean Eng., 38, pp. 1448-1463, 2011.
- [3] Cardo, A., Francescutto, A., Nabergoj, A., On damping models in free and forced rolling motions, Ocean Eng. 9, pp. 171-179, 1982.
- [4] Cardo, A., Coppola, C., Contento, G., Francescutto, A., Penna, R., On the Nonlinear Ship Roll Damping Components, Proceedings, International Symposium NAV`94, Roma 1994.
- [5] Das, S. N., Das, S. K., Mathematical model for coupled roll and yaw motions of a floating body in regular waves under resonant and non-resonant conditions, Applied Mathematical Modelling 29, pp. 19-34, 2005.
- [6] Dusinberre, Commander, H. W., Synchronous rolling and pitching, Navigation, Journal of the Institute of Navigation, Vol. 4, No. 2, pp. 83-85, 1954.
- [7] Falzarano, J., Somayajula, A., Seah, R., An overview of the prediction methods for roll damping of ships, Ocean Systems Engineering, Vol. 5, No. 2, pp. 55-76, 2015.
- [8] Falzarano, J., Taz Ul Mulk, M., Large Amplitude Rolling Motion of an Ocean Survey Vessel, Marine Technology, Vol. 31, pp. 278-285, 1994.
- [9] Francescutto, A., Contento, G., Bifurcations in ship rolling: experimental results and parameter identification technique, Ocean Eng. 26, pp. 1095-1123, 1999.
- [10] Haddara, M., Bennett, P., A Study of the Angle Dependence of Roll Damping Moment, Ocean Eng. 16, pp. 411-427, 1989.
- [11] Himeno, Y., Prediction of Ship Roll Damping – State of the Art, Report of Dept. of Naval Architecture and Marine Engineering, The University of Michigan, No. 239, 1981.
- [12] IMO, Intact Stability Code, 2008.
- [13] Jang, T., Kwon, S., Lee, J., Recovering the functional form of the nonlinear roll damping of ships from a free-roll decay experiment: An inverse formulism, Ocean Eng. 37, pp. 1337-1344, 2010.
- [14] Kawahara, Y., Maekawa, K., Ikeda, Y., A Simple Prediction Formula of Roll Damping of Conventional Cargo Ships on the Basis of Ikeda’s Method and Its Limitation, Journal of Shipping and Ocean Engineering 2, pp. 201-210, 2012.
- [15] Mahfouz, A., Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Eng. 31, pp. 2139-2156, 2004.
- [16] Neves, M., Rodriguez, C., On unstable ship motions resulting from strong non-linear coupling, Ocean Eng. 33, pp. 1853-1883, 2006.
- [17] Neves, M., Rodriguez, C., A coupled non-linear mathematical model of parametric resonance of ships in head seas, Applied Mathematical Modelling 33, pp. 2630-2645, 2009.
- [18] Roberts, J., Estimation of nonlinear ship roll damping from free-decay data, J. Ship Res. 29, pp. 127-138, 1985.
- [19] Spanos, D., Papanikolaou, A., Benchmark Study on Numerical Simulation Methods for the Prediction of Parametric Roll of Ships in Waves, Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles, St. Petersburg 2009.
- [20] Surendran, S., Reddy, V. R. J., Roll dynamics of a Ro-Ro ship, Int. Shipbuild. Prog., Vol. 49, No. 4, pp. 301-320, 2002.
- [21] Surendran, S., Reddy, V. R. J., Numerical simulation of ship stability for dynamic environment, Ocean Eng. 30, pp. 1305-1317, 2003.
- [22] Tylan, M., Analysis and validation of ad hoc nonlinear roll motion models, ARI – An International Journal for Physical and Engineering Sciences 51, pp. 113-119, 1998.
- [23] Tylan, M., The effect of nonlinear damping and restoring in ship rolling, Ocean Eng. 27, pp. 921-932, 2000.
- [24] Uzunoglu, E., Guedes Soares, C., Automated processing of free roll decay experimental data, Ocean Eng. 102, pp. 17-26, 2015.
- [25] Wawrzyński, W., Aproksymacja Krzywej ramion prostujących i jej wpływ na symulacje numeryczne kołysań bocznych statku, Logistyka, No. 4, CD 1, pp. 1161-1170, 2015.
- [26] Wawrzyński, W., Krata, P., Method for ship’s rolling period prediction with regard to non-linearity of GZ curve, Journal of Theoretical and Applied Mechanics, in press. 296
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1903ac0f-2371-40b5-86fc-760847ac17b0