Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The constrained regulation problem (CRP) for fractional-order nonlinear continuous-time systems is investigated. New existence conditions of a linear feedback control law for a class of fractional-order nonlinear continuous-time systems under constraints are proposed. A computation method for solving the CRP for fractional-order nonlinear systems is also presented. Using the comparison principle and positively invariant set theory, conditions guaranteeing positive invariance of a polyhedron for fractional-order nonlinear systems are established. A linear feedback controller model and the corresponding algorithm of the CRP for fractional nonlinear systems are also proposed by using the obtained conditions. The presented model of the CRP is formulated as a linear programming problem, which can be easily implemented from a computational point of view. Numerical examples illustrate the proposed method.
Rocznik
Tom
Strony
17--28
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
- College of Mathematics and Systems Sciences, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
autor
- College of Mathematics and Systems Sciences, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, Shandong 266590, China
autor
- Faculty of Economics and Business Administration, St. Kl. Ohridski Sofia University, 125 Tzarigradsko chaussee blvd., bl. 3, Sofia 1113, Bulgaria
Bibliografia
- [1] Ammour, A.S., Djennoune, S., Aggoune, W. and Bettayeb, M. (2015). Stabilization of fractional-order linear systems with state and input delay, Asian Journal of Control 17(5): 1946–1954.
- [2] Athanasopoulos, N., Bitsoris, G. and Vassilaki, M. (2010). Stabilization of bilinear continuous-time systems, 18th Mediterranean Conference on Control & Automation, Marrakech, Morocco, pp. 442–447.
- [3] Balochian, S. (2015). On the stabilization of linear time invariant fractional order commensurate switched systems, Asian Journal of Control 17(1): 133–141.
- [4] Benzaouia, A., Hmamed, A., Mesquine, F., Benhayoun, M. and Tadeo, F. (2014). Stabilization of continuous-time fractional positive systems by using a Lyapunov function, IEEE Transactions on Automatic Control 59(8): 2203–2208.
- [5] Chen, L., Wu, R., He, Y. and Yin, L. (2015). Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties, Applied Mathematics & Computation 257: 274–284.
- [6] Dastjerdi, A.A., Vinagre, B.M., Chen, Y. and HosseinNia, S.H. (2019). Linear fractional order controllers: A survey in the frequency domain, Annual Review in Control 47: 51–70.
- [7] Fernandez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Munoz-Vega, R. and Hernandez-Martinez, E.G. (2016). Lyapunov functions for a class of nonlinear systems using caputo derivative, Communications in Nonlinear Science & Numerical Simulation 43: 91–99.
- [8] Hao, Y. and Jiang, B. (2016). Stability of fractional-order switched non-linear systems, IET Control Theory & Applications 10(8): 965–970.
- [9] Jiao, Z., Chen, Y.Q. and Zhong, Y. (2013). Stability analysis of linear time-invariant distributed-order systems, Asian Journal of Control 15(3): 640–647.
- [10] Kaczorek, T. (2010). Practical stability and asymptotic stability of positive fractional 2D linear systems, Asian Journal of Control 12(2): 200–207.
- [11] Kaczorek, T. (2018). Decentralized stabilization of fractional positive descriptor continuous-time linear systems, International Journal of Applied Mathematics & Computer Science 28(1): 135–140, DOI: 10.2478/amcs-2018-0010.
- [12] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
- [13] Karthikeyan, R., Anitha, K. and Prakash, D. (2017). Hyperchaotic chameleon: Fractional order FPGA implementation, Complexity 2017(1): 1–16.
- [14] Lenka, B.K. (2018). Fractional comparison method and asymptotic stability results for multivariable fractional order systems, Communications in Nonlinear Science and Numerical Simulation 69: 398–415.
- [15] Lenka, B.K. and Banerjee, S. (2016). Asymptotic stability and stabilization of a class of nonautonomous fractional order systems, Nonlinear Dynamics 85(1): 167–177.
- [16] Li, Y., Chen, Y.Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffer stability, Computers & Mathematics with Applications 59(5): 1810–1821.
- [17] Li, Y., Zhao, D., Chen, Y., Podlubny, I. and Zhang, C. (2019). Finite energy Lyapunov function candidate for fractional order general nonlinear systems, Communications in Nonlinear Science and Numerical Simulation 78: 1–16.
- [18] Lim, Y.-H. and Ahn, H.-S. (2013). On the positive invariance of polyhedral sets in fractional-order linear systems, Automatica 49(12): 3690–3694.
- [19] Liu, S., Zhou, X.F., Li, X. and Jiang, W. (2016). Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays, Applied Mathematics Letters 65(1): 32–39.
- [20] Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y. and Wu, X. (2019). The novel fractional discrete multivariate grey system model and its applications, Applied Mathematical Modelling 40: 402–424.
- [21] Martinezfuentes, O. and Martinezguerra, R. (2018). A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach, Nonlinear Dynamics 94(3): 1973–1986.
- [22] Sabatier, J., Farges, C. and Trigeassou, J.C. (2013). Fractional systems state space description: Some wrong ideas and proposed solutions, Journal of Vibration & Control 20(7): 1076–1084.
- [23] Sabatier, J., Merveillaut, M., Malti, R. and Oustaloup, A. (2010). How to impose physically coherent initial conditions to a fractional system, Communications in Nonlinear Science & Numerical Simulation 15(5): 1318–1326.
- [24] Shen, J. and Lam, J. (2016). Stability and performance analysis for positive fractional-order systems with time-varying delays, IEEE Transactions on Automatic Control 61(9): 2676–2681.
- [25] Si, X. and Yang, H. (2021). A new method for judgment and computation of stability and stabilization of fractional order positive systems with constraints, Journal of Shandong University of Science and Technology (Natural Science) 40(1): 12–20.
- [26] Song, X. and Zhen, W. (2013). Dynamic output feedback control for fractional-order systems, Asian Journal of Control 15(3): 834–848.
- [27] Wang, Z., Yang, D., Ma, t. and Ning, S. (2014). Stability analysis for nonlinear fractional-order systems based on comparison principle, Nonlinear Dynamics 75(1–2): 387–402.
- [28] Wang, Z., Yang, D. and Zhang, H. (2016). Stability analysis on a class of nonlinear fractional-order systems, Nonlinear Dynamics 86(2): 1023–1033.
- [29] Yan, L., Chen, Y. Q. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications 59(5): 1810–1821.
- [30] Yang, H. and Hu, Y. (2020). Numerical checking method for positive invariance of polyhedral sets for linear dynamical system, Bulletin of the Polish Academy of Sciences: Technical Sciences 68(3): 23–29.
- [31] Yang, H. and Jia, Y. (2019). New conditions and numerical checking method for the practical stability of fractional order positive discrete-time linear systems, International Journal of Nonlinear Sciences and Numerical Simulation 20(3): 315–323.
- [32] Yepez-Martinez, H. and Gomez-Aguilar, J. (2018). A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM), Journal of Computational & Applied Mathematics 346: 247–260.
- [33] Yin, C., Zhong, S.M., Huang, X. and Cheng, Y. (2015). Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance, Applied Mathematics & Computation 269: 351–362.
- [34] Zhang, H., Wang, X.Y. and Lin, X.H. (2016). Stability and control of fractional chaotic complex networks with mixed interval uncertainties, Asian Journal of Control 19(1): 106–115.
- [35] Zhang, R., Tian, G., Yang, S. and Hefei, C. (2015a). Stability analysis of a class of fractional order nonlinear systems with order lying in (0,2), ISA Transactions 56: 102–110.
- [36] Zhang, S., Yu, Y. and Wang, H. (2015b). Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Analysis Hybrid Systems 16: 104–121.
- [37] Zhang, S., Yu, Y. and Yu, J. (2017). LMI conditions for global stability of fractional-order neural networks, IEEE Transactions on Neural Networks & Learning Systems 28(10): 2423–2433.
- [38] Zhao, Y., Li, Y., Zhou, F., Zhou, Z. and Chen, Y. (2017). An iterative learning approach to identify fractional order KiBaM model, IEEE/CAA Journal of Automatica Sinica 4(2): 322–331.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19030251-f6cc-4d9c-8ce1-ea61a9afd591