PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response to Marks (2025): Contemporary global warming versus climate change in the Holocene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Holocene geological record provides the most immediate context for understanding and interpreting the climate of the present and future Earth System. Marks (2025) suggests a Holocene climate steered largely by cyclical solar forcing, and that modern warming, driven by increased solar activity, will be replaced within the coming 3 kyr by cooling almost everywhere. This view contrasts with palaeoclimate data, instrumental records, an understanding of climate drivers and feedbacks, and global and regional climate modelling studies, which show that Holocene climate was largely controlled by slow Milankovitch-related changes. Superimposed on these were minor solar fluctuations with a higher frequency. Solar activity was at the same ‘high’ level in the 1780s, 1860s and 1980s, making it a highly unlikely cause of recent warming. Modern global warming has two main drivers: 1) anthropogenic greenhouse gases, which rose steeply after 1950; and 2) both water vapour, which increases as the ocean warms, and clouds. Atmospheric CO2 levels are higher than at any other time since the Middle Miocene, making global temperatures warmer than any multi-century interval since the Last Interglacial. Earth ’s climate has left its equable Holocene state. The long residence time of CO2 ensures persistent warming for tens of millennia.
Rocznik
Strony
469--476
Opis fizyczny
Bibliogr. 100 poz., wykr.
Twórcy
  • Scott Polar Research Institute, Lensfield Road, Cambridge CB2 1ER, UK
  • Department of Earth Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
  • Institute of Chemistry, Jan Kochanowski University, 7 Uniwersytecka St, 25-406 Kielce, Poland
  • Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Institute of Geoecology and Geoinformation, Biogeochemistry Research Unit, Krygowskiego 10, Poznań 61-680, Poland
  • School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
autor
  • Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
  • Division of History of Science, Technology and Environment, KTH Royal Institute of Technology, Sweden
  • Departamento de Geologia, Facultad de Ciencia y Tecnología, Universidad del Pais Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
  • Catholic University of the West, Angers, France
  • School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
Bibliografia
  • 1. AIT BRAHIM Y., WASSENBURG J.A., SHA L., CRUZ F.W., DEININ- GER M., SIFEDDINE A., BOUCHAOU L., SPÖTL C., EDWARDS R.L., CHENG H. 2019 - North Atlantic ice-rafting, ocean and atmospheric circulation during the Holocene: insights from Western Mediterranean speleothems. Geophysical Research Letters, 46: 7614-7623.
  • 2. ALLAN R.P., WILLETT K.M., JOHN V.O., TRENT T. 2022 - Global changes in water vapor 1979-2020. Journal of Geophysical Research: Atmospheres, 127, e2022JD036728; https://doi.org/10.1029/2022JD036728
  • 3. ARCHER D., GANOPOLSKI A. 2005 - A movable trigger: fossil fuel CO2 and the onset of the next glaciation. Geochemistry, Geophysics, Geosystems, 6 (5), Q05003.
  • 4. ARMSTRONG E., TALLAVAARA M., HOPCROFT P.O., VALDES PJ. 2023 - North African humid periods over the past 800,000 years. Nature Communications, 14, 5549.
  • 5. ARMSTRONG MCKAY D.I., STAAL A., ABRAMS J.F., WINKEL¬MANN R., SAKSCHEWSKIB., LORIANIS., FETZER I., CORNELL S.E., ROCKSTRÖM J., LENTON T.M. 2022 - Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377 (1171): 1-10.
  • 6. ARRHENIUS S. 1896 -XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. London and Edinburgh Philosophical Magazine and Journal of Science, 41 (251): 237-276.
  • 7. ARRHENIUS S. 1908 - Worlds in the making: the evolution of the universe. Harper and Bros., New York.
  • 8. AUGUSTSSON T., RAMANATHAN V. 1977 - A radiative-convective model study of the CO2-climate problem. Journal of the Atmospheric Sciences, 34: 448-451.
  • 9. BERGER A., LOUTRE M.-F. 2002 - An exceptionally long interglacial ahead. Science, 297: 1287-1288.
  • 10. BERNER R.A., MAASCH K.A. 1996 - Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J.J. Ebelmen in 1845. Geochimica et Cosmochimica Acta, 60 (9): 1633-1637.
  • 11. BOLIN B. 2007 - A History of the Science and Politics of Climate Change: The Role of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 12. BOND G., SHOWERS W., CHESEBY M., LOTTI R., ALMASI P., DEMENOCAL P., PRIORE P., CULLEN H., HAJDAS I., BONANI G. 1997 - A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278: 1257-1266.
  • 13. BOND G.C., KROMER B., BEER J., MUSCHELER R., EVANS M.N., SHOWERS W., HOFFMANN S., LOTTI-BOND R., HAJDAS I., BONANI G. 2001 - Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130-2152.
  • 14. BOVA S., ROSENTHAL Y., LIU Z., GODAD S.P., YAN M. 2021 - Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589: 548-553.
  • 15. BROECKER W.S. 1975 - Climatic change: are we on the brink of a pronounced global warming? Science, 188: 460-463.
  • 16. CALLENDAR G.S. 1938 - The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64: 223-237.
  • 17. CALLENDAR G.S. 1949 - Can carbon dioxide influence climate? Weather, 4: 310-314.
  • 18. CALLENDAR G.S. 1958 - On the amount of carbon dioxide in the atmosphere. Tellus, 10: 243-248.
  • 19. CARTAPANIS O., JONKERS L., MOFFA-SANCHEZ P., JACCARD S.L., DE VERNAL A. 2022 - Complex spatio-temporal structure of the Holocene Thermal Maximum. Nature Communications, 13, 5662.
  • 20. CASELDINE C.J., TURNEY C., LONG A.J. 2010 - IPCC and palaeoclimate - An evolving story? Journal of Quaternary Science, 25: 1-4.
  • 21. CHARNEY J.G., ARAKAWA A., BAKER J.D., BOLIN B., DICKINSON R.E., GOODY R., LEITH C.E., STOMMEL H.M., WUNSCH C.I., PERRY J.S., CHEN R.S., BOUADJEMI D., FISHER T. 1979 - Carbon dioxide and climate: a scientific assessment. Report of an Ad Hoc Study Group on Carbon Dioxide and Climate. National Academy of Sciences, Washington D.C.
  • 22. CHENG L., ABRAHAM J., TRENBERTH K.E., REAGAN J., ZHANG H.-M., STORTO A., VON SCHUCKMANN K., PAN Y., ZHU Y., MANN M.E., ZHU J., WANG F., YU F., LOCARNINI R., FASULLO J., HUANG B., GRAHAM G., YIN X., GOURETSKI V., ZHENG F., LI Y., ZHANG B., WAN L., CHEN X., WANG D., FENG L., SONG X., LIU Y., RE- SEGHETTI F., SIMONCELLI S., CHEN G., ZHANG R., MISHONOV A., TAN Z., WEI W., YUAN H., LI G., REN Q., CAO L., LU Y., DU J., LYU K., SULAIMAN A., MAYER M., WANG H., MA Z., BAO S., YAN H., LIU Z., YANG C., LIU X., HAUSFATHER Z., SZEKELY T., GUES F. 2025 - Record high temperatures in the ocean in 2024. Advances in Atmospheric Sciences; https://doi.org/10.1007/s00376-025-4541-3
  • 23. CLARK P.U., SHAKUN J.D., MARCOTT S.A., MIX A.C., EBY M., KULP S., LEVERMANN A., MILNE G.A., PFISTER P.L., SANTERB.D., SCHRAG D.P., SOLOMON S., STOCKER T.F., STRAUSS B.H., WEAVER A.J., WINKELMANN R., ARCHER D., BARD E., GOLDNER A., LAMBECK K., PIERREHUMBERT R.T., PLATTNER G.-K. 2016 - Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 6: 360-369.
  • 24. CLETTE F., SVALGAARD L., VAQUERO J.M., CLIVER E.W. 2014 - Revisiting the sunspot number. Space Science Reviews, 186: 35-103.
  • 25. COPERNICUS 2025 - 2024 is the first year to exceed 1.5°C above pre-industrial level; https://climate.copernicus.eu/copernicus-2024-first-year-exceed-15degc-above-pre-industrial-level
  • 26. CRUCIFIX M. 2009 - Modelling the climate of the Holocene. [In:] Battarbee R.W., Binney H.A. (eds.), Natural Climate Variability and Global Warming: a Holocene Perspective. Wiley-Blackwell, Chichester and Oxford: 98-122.
  • 27. EBELMEN J.J. 1845 - Sur les produits de la decomposition des especes minerals de la famille des silicates. Annales des Mines, 7: 3-66.
  • 28. ESPER J., COOK E.R., SCHWEINGRUBER F.H. 2002 - Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295: 2250-2252.
  • 29. FAN Y., JIA J., YU J., LIU Y., LIU X., ZHAO L., XIA D. 2019 - Bond events in the Tarim Basin: The loess record. Quaternary International, 643: 73-80.
  • 30. FLOHN H. 1979 - A scenario of possible future climates - natural and man-made. Proceedings of the World Climate Conference, 537: 243-266.
  • 31. FOOTE E. 1856 - Circumstances affecting the heat of the Sun’s rays. American Journal of Science and Arts, 22: 382-383.
  • 32. FREITAS N.L., WALTER ANTHONY K., LENZ J., PORRAS R.C., TORN M.S. 2025 - Substantial and overlooked greenhouse gas emissions from deep Arctic lake sediment. Nature Geoscience; https://doi.org/10.1038/s41561-024-01614-y.
  • 33. GANOPOLSKI A., WINKELMANN R., SCHELLNHUBER J.R. 2016 - Critical insolation-CO2 relation for diagnosing past and future glacial inception. Nature, 529: 200-203.
  • 34. GOESSLING H.F., RACKOW T., JUNG T. 2025 - Recent global temperature surge intensified by record-low planetary albedo. Science, 387 (6729): 68-73.
  • 35. HAMLINGTON B.D., BELLAS-MANLEY A., WILLIS J.K., FOURNIER S., VINOGRADOVA N., NEREM R.S., PIECUCH C.G., THOMPSON P.R., KOPP R. 2024 - The rate of global sea level rise doubled during the past three decades. Communications Earth & Environment, 5, 601.
  • 36. HANSEN J., JOHNSON D., LACIS A., LEBEDEFF S., LEE P., RIND D., RUSSELL G. 1981 - Climate impact of increasing atmospheric carbon dioxide. Science, 213: 957-966.
  • 37. HANSEN J.E., LACIS A., RIND D., RUSSELL G., STONE P., FUNG I., RUEDY R., LERNER J. 1984 - Climate sensitivity: analysis of feedback mechanisms, in climate processes and climate sensitivity. [In:] Hansen J.E., Takahashi T. (eds.), Geophysical Monographs, 29. American Geophysical Union, Washington D.C.: 130-163.
  • 38. HANSEN J.E., SATO M., SIMONS L., NAZARENKO L.S., SANGHA I., KHARECHA P., ZACHOS J.C., VON SCHUCKMANN K., LOEB N.G., OSMAN M.B., JIN Q., TSELIOUDIS G., JEONG E., LACIS A., RUEDY R., RUSSELL G., CAO J., LI J. 2023 - Global warming in the pipeline. Oxford Open Climate Change, 3(1); doi.org/10.1093/oxfclm/kgad008
  • 39. HÖNISCH B., ROYER D.L., BREECKER D.O., POLISSAR P.J., BOWEN G.J., HENEHAN M.J., CUI Y., STEINTHORSDOTTIR M., MCELWAIN J.C., KOHN M.J., PEARSON A., PHELPS S.R., UNO K.T., RIDGWELL A., ANAGNOSTOU E., AUSTERMANN J., BADGER M.P.S., BARCLAY R.S., BIJL P.K., CHALK T.B., SCOTESE C.R., DE LA VEGA E., DECONTO R.M., DYEZ K.A., FERRINI V., FRANKS P.J., GIULIVI C.F., GUTJAHR M., HARPER D.T., HAYNES L.L., HUBER M., SNELL K.E., KEISLING B.A., KONRAD W., LOWENSTEIN T.K., MALINVERNO A., GUILLERMIC M., MEJÍA L.M., MILLIGAN J.N., MORTON JJ., NORDT L., WHITEFORD R., ROTH-NEBELSICK A., RUGENSTEIN J.K.C., SCHALLER M.F., SHELDON N.D., SOSDIAN S., WILKES E.B., WITKOWSKI C.R., ZHANG Y.G., ANDERSON L., BEERLING D.J., BOLTON C., CERLING T.E., COTTON J.M., DA J., EKART D.D., FOSTER G.L., GREENWOOD D.R., HYLAND E.G., JAGNIECKI E.A., JASPER J.P., KOWALCZYK J.B., KUNZMANN L., KÜRSCHNER W.M., LAWRENCE C.E., LEAR C.H., MARTÍNEZ-BOTÍ M.A., MAXBAUER D.P., MONTAGNA P., NAAFS B.D.A., RAE J.W.B., RAITZSCH M., RETALLACK G.J., RING S.J., SEKI O., SEPÚLVEDA J., SINHA A., TESFAMICHAEL T.F., TRIPATI A., VAN DER BURGH J., YU J., ZACHOS J.C., ZHANG L. 2023 - Toward a Cenozoic history of atmospheric CO2. Science, 382, eadi5177 IPCC (Intergovernmental Panel on Climate Change) 1990 - Climate Change: The IPCC Scientific Assessment. Cambridge, New York, Port Chester, Melbourne, Sydney.
  • 40. IPCC 2001 - Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 41. IPCC 2007 - Climate change 2007, vol 4. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 42. IPCC 2021 - Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 43. JANSEN E., OVERPECK J., BRIFFA K.R., DUPLESSY J.-C., JOOS F., MASSON-DELMOTTE V., OLAGO D., OTTO-BLIESNER B., PELTIER W.R., RAHMSTORF S., RAMESH R., RAYNAUD D., RIND D., SOLOMINAO., VILLALBAR., ZHANGD. 2007-Palaeoclimate. [In:] Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds.), Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 433-497.
  • 44. KAUFMANN D.S., BROADMAN E. 2023 - Revisiting the Holocene global temperature conundrum. Nature, 614: 425-435.
  • 45. LEAR C.H., ANAND P., BLENKINSOP T., FOSTER G.L., GAGEN M., HOOGAKKER B., LARTER R.D., LUNT D.J., MCCAVE I.N., MCCLYMONT E., PANCOST R.D., RICKABY R.E.M., SCHULTZ D.M., SUMMERHAYES C.P., WILLIAMS C.J.R., ZALASIEWICZ J. 2020 - Geological Society of London scientific statement: what the geological record tells us about our present and future climate. Journal of the Geological Society of London, 178; doi.org/10.1144/jgs2020-239
  • 46. LENTON T., ROCKSTRÖM J., GAFFNEY O., RAHMSTORF S., RICHARDSON K., STEFFEN W., SCHELLNHUBER H.J. 2019 - Climate tipping points - too risky to bet against. Nature, 575: 592-595.
  • 47. LIUZ., ZHU J., ROSENTHAL Y., ZHANG X., OTTO-BLIESNERB.L., TIMMERMANN A., SMITH R.S., LOHMANN G., ZHENG W., TIMM O.E. 2014 - The Holocene temperature conundrum. Proceedings of the National Academy of Sciences, 111: E3501-E3505.
  • 48. LJUNGQVIST F.C., KRUSIC P.J., BRATTSTRÖM G., SUNDQVIST H.S. 2012 - Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past, 8: 227-249.
  • 49. MAGNY M. 2007 - Lake level studies/West-Central Europe. [In:] Elias S.A. (ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam: 1389-1399.
  • 50. MANABE S., STOUFFER R.J. 1980 - Sensitivity of the global climate to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research, Oceans, 85 (C10): 5529-5554.
  • 51. MANABE S., WETHERALD R.T. 1975 - The effects of doubling CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences, 32 (1): 3-15.
  • 52. MANN M.E., BRADLEY R.S., HUGHES M.K. 1998 - Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392: 779-787.
  • 53. MARCOTT S.A., SHAKUN J.D., CLARK P.U., MIX A.C. 2013 - A reconstruction of regional and global temperature for the past 11,300 years. Science, 339: 1198-1201.
  • 54. MARKS L. 2025 - Contemporary global warming versus climate change in the Holocene. Przegląd Geologiczny, 73 (2): 170-176.
  • 55. MATTHES K., FUNKE B., ANDERSSON M.E., BARNARD L., BEER J., CHARBONNEAU P., MATTHES K., FUNKE B., ANDERSSON M.E., BARNARD L., BEER J., CHARBONNEAU P., CLILVERD M.A., DUDOK DE WIT T., HABERREITER M., HENDRY A., JACKMAN C.H., KRETZSCHMAR M., KRUSCHKE T., KUNZE M., LANGEMATZ U., MARSH D.R., MAYCOCK A.C., MISIOS S., RODGER C.J., SCAIFE A.A., SEPPÄLÄ A., SHANGGUAN M., SINNHUBER M., TOURPALI K., USOSKIN I., VAN DE KAMP M., VERRONEN PT., VERSICK S. 2017 - Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10 (6): 2247-2302.
  • 56. MCKAY N.P., KAUFMANN D.S., ARCUSA S.H., KOLUS H.R., EDGE D.C., ERB M.P., HANCOCK C.L., ROUTSON C.C., ŻARCZYŃSKI M., MARSHALL L.P., ROBERTS G.K., TELLES F. 2024 - The 4.2 ka event is not remarkable in the context of Holocene climate variability. Nature Communications, 15, 6555.
  • 57. MOBERG A., SONECHKIN D.M., HOLMGREN K., DATSENKO N.M., KARLEN W. 2005 - Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433: 613-618.
  • 58. NAS (National Academy of Sciences) 1983 - Changing climate. Report of the Carbon Dioxide Assessment Committee. National Academies Press, Washington DC.
  • 59. NASA Earth Observatory 2010 - The water cycle: a multi-phased journey; https://earthobservatory.nasa.gov/features/Water/page2.php
  • 60. NASA 2025 - Climate change - global temperature; https://climate.nasa.gov/vital-signs/global-temperature/?intent=121
  • 61. NEUKOM R., SCHURER A.P., STEIGER N.J., HEGERL G.C. 2018 - Possible causes of data model discrepancy in the temperature history of the last millennium. Scientific Reports, 8, 7572.
  • 62. NEUKOM R., STEIGERN., GÓMEZ-NAVARRO J.J., WANG J., WERNER J.P. 2019 - No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571: 550-554.
  • 63. NILSSON A., NGUYEN L., PANOVSKA S., HERBST K., ZHENG M., SUTTIE N., MUSCHELER R. 2024 - Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records. Nature Geoscience, 17: 654-659.
  • 64. ONAC B.P., MITROVICA J.X., GINÉS J., ASMEROM Y., POLYAK V J., TUCCIMEI P., ASHE E.L., FORNÓS J.J., HOGGARD M.J., COULSON S., GINÉS A., SOLIGO M., VILLA I.M. 2022 - Exceptionally stable preindustrial sea level inferred from the western Mediterranean Sea. Advanced Science, 8, eabm6185.
  • 65. O’REILLY J.L., VARDY M., DE PRYCK K., FEITAL BENEDETTI M. DA S. 2024 - Inside the IPCC: How Assessment Practices Shape Climate Knowledge. Cambridge University Press, Cambridge.
  • 66. ORESKES N., CONWAY E.M. 2010 - Defeating the merchants of doubt. Nature, 465: 686-687.
  • 67. PAGES CONSORTIUM 2013 - Continental-scale temperature variability during the last two millennia. Nature Geoscience, 6: 339-346.
  • 68. PEDERSEN J.T.S., VAN VUUREN D., GUPTA J., SANTOS F.D., EDMONDS J., SWART R. 2022 - IPCC emission scenarios: How did critiques affect their quality and relevance 1990-2022? Global Environmental Change, 75, 102538.
  • 69. PIERREHUMBERT R.T. 2011 - Infrared radiation and planetary temperature. Physics Today, January 2011: 33-38.
  • 70. PLASS G.N. 1956a - The carbon dioxide theory of climate change. Tellus, 8: 140-154.
  • 71. PLASS G.N. 1956b - The influence of the 15-micron carbon dioxide band on the atmospheric infra-red cooling rate. Quarterly Journal of the Royal Meteorological Society, 82: 310-329.
  • 72. PLASS G.N. 1956c - Effect of carbon dioxide variations on climate. American Journal of Physics, 24 (5): 376-387.
  • 73. PLASS G.N. 1959 - Carbon dioxide and climate. Scientific American, 201 (1): 41-47.
  • 74. PLASS G.N. 1961 - The influence of infrared absorptive molecules on the climate. Annals of the New York Academy of Sciences, 95 (1): 61-71.
  • 75. RAMANATHAN V., LIAN M.S., CESS R.D. 1979 - Increased atmospheric CO2: zonal and seasonal estimates of the effect on the radiation energy balance and surface temperature. Journal of Geophysical Research, 84 (C8): 4949-4958.
  • 76. RANTANEN M., KARPECHKO A., LIPPONEN A., NORDLING K., HYVÄRINEN O., RUOSTEENOJA K., VIHMA T., LAAKSONEN A. 2022 - The Arctic has warmed nearly four times faster than the globe since 1979. Nature Communications Earth & Environment, 3, 168; https://doi.org/10.1038/s43247-022-00498-3
  • 77. REVELLE R. 1982 - Carbon dioxide and world climate. Scientific American, 247 (2): 35-43.
  • 78. REVELLE R., SUESS H.E. 1957 - Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9 (1): 18-27.
  • 79. REVELLE R., BROECKER W., CRAIG H., KEELING C.D., SMAGORINSKY J. 1965 - Appendix Y4. Atmospheric carbon dioxide. [In:] President’s Science Advisory Committee (ed.), Restoring the quality of our environment: Report of the Environment Pollution Panel. White House, Washington, DC: 111-133.
  • 80. ROBIN L., SÖRLIN S., WARDE P. 2013 - The Future of Nature: documents of Global Change. Yale University Press: 512.
  • 81. SCHEFFER M., BASCOMPTE J., BROCK W.A., BROVKIN V., CARPENTER S.R., DAKOS V., HELD H., VAN NES E.H., RIETKERK M., SUGIHARA G. 2009 - Early-warning signals for critical transitions. Nature, 461: 53-59.
  • 82. SCHMIDT G. 2024 - Why 2023’s heat anomaly is worrying scientists. Nature, 627, 467.
  • 83. SCHMIDT G.A., RUEDY R., MILLER R.L., LACIS A.A. 2010 - The attribution of the present-day total greenhouse effect. Journal of Geophysical Research, 115: D20106.
  • 84. SIGL M., WINSTRUP M., MCCONNELL J.R., WELTEN K.C., PLUNKETT G., LUDLOW F., BÜNTGEN U., CAFFEE M., CHEL- LMAN N., DAHL-JENSEN D., FISCHER H., KIPFSTUHL S., KOSTICK C., MASELLI O.J., MEKHALDI F., MULVANEY R., MUSCHELER R., PASTERIS D.R., PILCHER J.R., SALZER M., SCHÜPBACH S., STEFFENSEN J.P., VINTHER B.M., WOODRUFF T.E. 2015 - Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523: 543-549.
  • 85. SIGL M., TOOHEY M., MCCONNELL J.R., COLE-DAI J., SEVERI M. 2022 - Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array. Earth System Science Data, 14: 3167-3196.
  • 86. STEINHILBER F., ABREU J.A., BEER J., BRUNNER I., CHRISTL M., FISCHER H., HEIKKILÄ U., KUBIK P.W., MANN M., MCCRACKEN K.G., MILLER H., MIYAHARA H., OERTER H., WILHELMS F. 2012 - 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences, 109 (16): 5967-5971.
  • 87. SUMMERHAYES C.P 2017 - Comment on ‘The Medieval Quiet Period’ - implications arising from models of solar irradiance. Holocene, 27 (2): 315-316.
  • 88. SUMMERHAYES C.P., ZALASIEWICZ J., HEAD M.J., SYVITSKI J., BARNOSKY A.D., CEARRETAA., FIAŁKIEWICZ-KOZIEŁ B., GRINEVALD J., LEINFELDER R., MCCARTHY F.M.G., MCNEILL J.R., SAITO Y., WAGREICH M., WATERS C.N., WILLIAMS M., ZINKE J. 2024 - The future extent of the Anthropocene epoch: a synthesis. Global and Planetary Change, 242, 104568.
  • 89. TALENTO S., GANOPOLSKI A. 2021 - Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles. Earth System Dynamics, 12: 1275-1293.
  • 90. TALENTO S., WILLEIT M., GANOPOLSKI A. 2024 - New estimation of critical insolation-CO2 relationship for triggering glacial inception. Climate of the Past, 20: 1349-1364.
  • 91. TAN L., LI Y., WANG X., CAI Y., LIN F., CHENG H., MA L., SIN- HA A., EDWARDS R.L. 2020 - Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites. Geophysical Research Letters, 46, e2020GL090273.
  • 92. TOLLEFSON J. 2025 - Earth shattered heat records in 2023 and 2024: is global warming speeding up? Nature, 6 January; https://www.nature.com/articles/d41586-024-04242-z
  • 93. TYNDALL J. 1861 - On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption and conduction. London Edinburgh Philosophical Magazine and Journal of Science, 22 (146): 169-194.
  • 94. TYNDALL J. 1864 - The absorption and radiation of heat by gaseous and liquid matter. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 28: 81-106.
  • 95. USDOE (US Department of Energy) 1980 - Environmental and societal consequences of a possible CO2-induced climate change - a research agenda. Technical report DOE/EV/10019-01, vol. 1 of 2. US Department of Energy, US Department of Commerce, Springfield VA.
  • 96. WANNER H., BEER J., BÜTIKOFER J., CROWLEY T.J., CUBASCH U., FLÜCKIGER J., GOOSSE H., GROSJEAN M., JOOS F., KAPLAN J.O., KÜTTEL M., MÜLLER S.A., PRENTICE I.C., SOLOMINA O., STOCKER T.F., TARASOV P., WAGNER M., WIDMANN M. 2008 - Midto late Holocene climate change: an overview. Quaternary Science Reviews, 27: 1791-1828.
  • 97. WARDE P., ROBIN L., SÖRLIN S. 2018 - The Environment: a History of the Idea. Johns Hopkins University Press: 256.
  • 98. WMO (World Meteorological Organization) 1986 - Report of the International Conference of the Assessment of the Role of Carbon Dioxide and of Other Greenhouse Gases in Climate Variations and Associated Impacts. WMO Report 661. WMO, Geneva.
  • 99. WUNDERLING N., VON DER HEYDT A.S., AKSENOV Y., BARKER S., BASTIAANSEN R., BROVKIN V., BRUNETTI M., COUPLET V., KLEINEN T., LEAR C.H., LOHMANN J., ROMAN-CUESTA R.M., SINET S., SWINGEDOUW D., WINKELMANN R., ANAND P., BARICHIVICH J., BATHIANY S., BAUDENA M., BRUUN J.T., CHIESSI C.M., COXALL H.K., DOCQUIER D., DONGES J.F., FALKENA S.K.J., KLOSE A.K., OBURA D., ROCHA J., RYNDERS S., STEINERT N.J., WILLEIT M. 2024 - Climate tipping point interactions and cascades: a review. Earth System Dynamics, 15: 41-74; https://doi.org/10.5194/esd-15-41-2024
  • 100. ZIELHOFER C., KÖHLER A., MISCHKE S., BENKADDOUR A., MIKDAD A., FLETCHER W.J. 2019 - Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events. Climate of the Past, 15: 463-475.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-19013add-e3af-48f4-98e6-71c008ec0bb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.