Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The determination of actual evapotranspiration (ET) plays a crucial role in hydrological modelling; however, it is subject to multiple sources of uncertainty. Sophisticated energy-based methods, such as METRIC, may lead to varying results based on different initial and boundary conditions. In this study, the relationship between groundwater withdrawal and the uncertainty effects of ET was explored by incorporating the uncertainty of the calculated ET values through an ensemble-based implementation of the METRIC model into the comprehensive interval-based water balance model, which includes surface and groundwater modules developed in terms of gray value model. The developed interval of ET is based on 20 members with different hot/cold pixels to provide interval-based monthly ET values. The study area is the Ghorveh-Dehgolan basin, a developed and mountainous sub-basin of the Sefidrood watershed with three alluvial aquifers in Northern Iran. The paradigm shift from deterministic hydrological structure to interval-based hydrologic structure improved the statistical metrics of the model responses, such as the streamflow KGE metric of the calibration and validation datasets, which improved from (0.5, 0.18) to (0.57, 0.49), respectively. Additionally, the proposed approach decreased the uncertainty level tied to the simulated streamflow and groundwater levels. Based on the results, normalized uncertainty efficiency (NUE) values of the simulated streamflow and groundwater level values increased as well.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1985--2007
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
autor
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
autor
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
autor
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada
autor
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
autor
- School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
Bibliografia
- 1. Abedini MJ, Nasseri M (2008) Inverse distance weighted revisited. In: 4th APHW, Conference Beijing.
- 2. Acharya B, Sharma V (2021) Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region. Remote Sensing. https:// doi.org/10.3390/rs13091822
- 3. Ahmadi A, Nasseri M (2020) Do direct and inverse uncertainty assessment methods present the same results? J Hydroinf 22(4):842-855. https://doi.org/10.2166/hydro.2020.190
- 4. Al Zayed IS, Elagib NA, Ribbe L, Heinrich J (2016) Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: a comparative study. Agric Water Manag 177:66-76. https://doi.org/10. 1016/j.agwat.2016.06.027
- 5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 H2Olive3s view project no title view project. Fao Rome 300(9):D05109
- 6. Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007a) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng 133(4):395-406. https://doi.org/10.1061/(asce)0733-9437(2007)133:4(395)
- 7. Allen RG, Tasumi M, Trezza R (2007b) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J Irrig Drain Eng 133(4):380-394. https:// doi.org/10.1061/(asce)0733-9437(2007)133:4(380)
- 8. Allen RG, Tasumi M, Trezza R (2002) SEBAL (surface energy balance algorithms for land)-advanced training and users manual-. Idaho Implement 1-98.
- 9. Baeumler NW, Kjaersgaard J, Gupta SC (2019) Evapotranspiration from corn, soybean, and prairie grasses using the METRIC model. Agron J 111(2):770-780. https://doi.org/10.2134/agronj2018.08. 0506
- 10. Baig F, Sherif M, Faiz MA (2022) Quantification of precipitation and evapotranspiration uncertainty in rainfall-runoff modeling. Hydrology 9(3):51. https://doi.org/10.3390/hydrology9030051
- 11. Bastiaanssen WGM (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J Hydrol 229(1-2):87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
- 12. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J Hydrol 212-213(1-4):198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
- 13. Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, Van Der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J Hydrol 212-213(1-4):213-229. https://doi.org/10.1016/S0022-1694(98) 00254-6
- 14. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279-298
- 15. Beven K, Binley A (2014) GLUE: 20 years on. Hydrol Process 28:5897 Brutsaert W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour Res 11(5):742-744. https://doi. org/10.1029/WR011i005p00742
- 16. Chen H, Huang JJ, Dash SS, Wei Y, Li H (2022a) A hybrid deep learning framework with physical process description for simulation of evapotranspiration. J Hydrol 606:127422. https://doi.org/10. 1016/j.jhydrol.2021.127422
- 17. Chen H, Huang JJ, Dash SS, Lan Z, Gao J, McBean E, Singh VP (2022b) Development of a three-source remote sensing model for estimation of urban evapotranspiration. Adv Water Resour 161:104126. https://doi.org/10.1016/j.advwatres.2022.104126
- 18. Chen H, Huang JJ, Dash SS, McBean E, Wei Y, Li H (2022c) Assessing the impact of urbanization on urban evapotranspiration and its components using a novel four-source energy balance model. Agric for Meteorol 316:108853. https://doi.org/10.1016/j.agrfo rmet.2022.108853
- 19. Chu W, Gao X, Sorooshian S (2011) A new evolutionary search strategy for global optimization of high-dimensional problems. Inf Sci 181(22):4909-4927. https://doi.org/10.1016/j.ins.2011.06.024
- 20. Corbari C, Ravazzani G, Mancini M (2011) A distributed thermodynamic model for energy and mass balance computation: FEST-EWB. Hydrol Process 25(9):1443-1452. https://doi.org/10.1002/ hyp.7910
- 21. Corbari C, Mancini M, Li J, Su Z (2015) Can satellite land surface temperature data be used similarly to river discharge measurements for distributed hydrological model calibration? Hydrol Sci J 60(2):202-217. https://doi.org/10.1080/02626667.2013.866709
- 22. De Vos NJ, Rientjes THM, Gupta HV (2010) Diagnostic evaluation of conceptual rainfall-runoff models using temporal clustering. Hydrol Process 24(20):2840-2850. https://doi.org/10.1002/hyp. 7698
- 23. Deardorff JW (1968) Dependence of air-sea transfer coefficients on bulk stability. J Geophys Res 73(8):2549-2557
- 24. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015-1031. https://doi.org/10.1029/91WR02985
- 25. Elkatoury A, Alazba AA, Mossad A (2020) Estimating evapotranspiration using coupled remote sensing and three SEB models in an Arid Region. Environmental Processes 7(1):109-133. https://doi. org/10.1007/s40710-019-00410-w
- 26. Fashae OA, Obateru RO, Olusola AO (2020) A simple distributed water balance model for an urbanized river basin using remote sensing and GIS techniques. Geocarto Int 35(9):954-975. https:// doi.org/10.1080/10106049.2018.1557261
- 27. Freer J, Beven K, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161-2173. https:// doi.org/10.1029/95WR03723
- 28. Guo S, Wang J, Xiong L, Ying A, Li D (2002) A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. J Hydrol 268(1-4):1-15. https://doi.org/ 10.1016/S0022-1694(02)00075-6
- 29. Guo S, Chen H, Zhang H, Xiong L, Liu P, Pang B, Wang G, Wang Y (2005) A semi-distributed monthly water balance model and its application in a climate change impact study in the middle and lower yellow river basin. Water Int 30(2):250-260. https://doi.org/ 10.1080/02508060508691864
- 30. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377(1-2):80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
- 31. Herman MR, Nejadhashemi AP, Abouali M, Hernandez-Suarez JS, Daneshvar F, Zhang Z, Anderson MC, Sadeghi AM, Hain CR, Sharifi A (2018) Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J Hydrol 556:39-49. https://doi.org/10.1016/j.jhydrol.2017.11.009
- 32. IWRMC (Iran Water Resources Management Company) (2020) Summary of the status of groundwater table and storage in Iran's alluvial aquifers (2019-2020 Water Year). Iran Ministry of Energy, Iran (In Persian)
- 33. Jazim AA (2006) A monthly six-parameter water balance model and its application at arid and semiarid low yielding catchments. J King Saud Univ Eng Sc 19(1):65-81. https://doi.org/10.1016/S1018-3639(18)30848-1
- 34. Jin X, Xu CY, Zhang Q, Singh VP (2010) Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol 383(3-4):147-155. https://doi.org/10.1016/j.jhydrol.2009.12.028
- 35. Kairu EN (1991) A review of methods for estimating evapotranspiration. GeoJournal 25(4):371-376. https://doi.org/10.1007/bf024 39487
- 36. Kazumba S, Oron G, Honjo Y, Kamiya K (2008) Lumped model for regional groundwater flow analysis. J Hydrol 359(1-2):131-140. https://doi.org/10.1016/j.jhydrol.2008.06.021
- 37. Khalaj M (2021) Assessment of tectonic activities of Ghorveh-Dehgolan basin by using geomorphic indices. Geogr Dev Iran J 19(62):133-156
- 38. Kheimi M, Abdelaziz SM (2022) A daily water balance model based on the distribution function unifying probability distributed model and the SCS curve number method. Water (switzerland). https:// doi.org/10.3390/w14020143
- 39. Knoben WJM, Freer JE, Woods RA (2019) Technical note: inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol Earth Syst Sci 23(10):4323-4331. https://doi.org/10.5194/hess-23-4323-2019
- 40. Kunnath-Poovakka A, Ryu D, Renzullo LJ, George B (2016) The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. J Hydrol 535:509-524. https://doi.org/10.1016/j.jhydrol.2016.02. 018
- 41. Lian J, Huang M (2016) Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region. Agric Water Manag 165:153-162. https://doi.org/10.1016/j.agwat. 2015.12.001
- 42. Lima JGA, Sánchez JM, Piqueras JG, Sobrinho JE, Viana PC, Alves ADS (2020) Evapotranspiration of sorghum from the energy balance by METRIC and STSEB. Rev Bras Eng Agric Ambient 24(1):24-30. https://doi.org/10.1590/1807-1929/agriambi.v24n1 p24-30
- 43. Liu W, Wang L, Zhou J, Li Y, Sun F, Fu G, Li X, Sang YF (2016) A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J Hydrol 538:82-95. https://doi. org/10.1016/j.jhydrol.2016.04.006
- 44. Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50(2):1131-1151. https:// doi.org/10.1002/2013WR014581
- 45. Losgedaragh SZ, Rahimzadegan M (2018) Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (case study: Amirkabir dam, Iran). J Hydrol 561:523-531. https://doi.org/10.1016/j.jhydrol.2018.04. 025
- 46. Loukas A, Mylopoulos N, Vasiliades L (2007) A modeling system for the evaluation of water resources management strategies in Thessaly, Greece. Water Resour Manag 21(10):1673-1702. https://doi. org/10.1007/s11269-006-9120-5
- 47. McCabe MF, Wood EF (2006) Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens Environ 105(4):271-285. https://doi.org/10.1016/j.rse.2006. 07.006
- 48. Mirzaei M, Huang YF, El-Shafie A, Shatirah A (2015) Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stoch Environ Res Risk Assess 29(5):1265-1273. https:// doi.org/10.1007/s00477-014-1000-6
- 49. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 24(151):163-187
- 50. Montanari A (2011) Uncertainty of hydrological predictions. Treatise Water Sci 2:459-478. https://doi.org/10.1016/B978-0-444-53199-5.00045-2
- 51. Mousavi R, Nasseri M, Abbasi S, Taheri M, Shamsi Anboohi M (2022) Global gridded products efficiency in closing water balance models: various modeling scenarios for behavioral assessments. Acta Geophys. https://doi.org/10.1007/s11600-022-01004-1
- 52. Murray SJ, Foster PN, Prentice IC (2012) Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J Hydrol 448-449:14-29. https://doi.org/10.1016/j.jhydrol.2012.02.044
- 53. Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282-290
- 54. Nasseri M, Zahraie B, Ansari A, Solomatine DP (2013) Uncertainty assessment of monthly water balance models based on incremental modified fuzzy extension principle method. J Hydroinf 15(4):1340-1360. https://doi.org/10.2166/hydro.2013.159
- 55. Nasseri M, Ansari A, Zahraie B (2014) Uncertainty assessment of hydrological models with fuzzy extension principle: evaluation of a new arithmetic operator. Water Resour Res 50(2):1095-1111. https://doi.org/10.1002/2012WR013382
- 56. Nasseri M, Zahraie B, Samian HP, Khodadadi M (2021) Evaluation of empirical methods to estimate streamflow in Ungauged Basins (case study: the Sefidroud Watershed). Geogr Environ Plan 32(1):1-24. https://doi.org/10.22108/gep.2021.125717.1369
- 57. Nosrati K, Laaha G, Sharifnia SA, Rahimi M (2015) Regional low flow analysis in Sefidrood Drainage Basin, Iran using principal component regression. Hydrol Res 46(1):121-135. https://doi.org/ 10.2166/nh.2014.087
- 58. Nott DJ, Marshall L, Brown J (2012) Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: what’s the connection? Water Resour Res 48:W12602. https://doi. org/10.1029/2011WR011128
- 59. Odusanya AE, Mehdi B, Schürz C, Oke AO, Awokola OS, Awomeso JA, Adejuwon JO, Schulz K (2019) Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol Earth Syst Sci 23(2):1113-1144. https://doi.org/10.5194/hess-23-1113-2019
- 60. Odusanya AE, Schulz K, Biao EI, Degan BAS, Mehdi-Schulz B (2021) Evaluating the performance of streamflow simulated by an ecohydrological model calibrated and validated with global land surface actual evapotranspiration from remote sensing at a catchment scale in West Africa. J Hydrol Reg Stud. https://doi.org/10.1016/j. ejrh.2021.100893
- 61. Pang B, Shi S, Zhao G, Shi R, Peng D, Zhu Z (2020) Uncertainty assessment of urban hydrological modelling from a multiple objective perspective. Water (switzerland). https://doi.org/10. 3390/W12051393
- 62. Poorsepahy-Samian H, Zahraie B, Nasseri M, Dolatabadi N, Khoda-dadi M (2022) Semi-distributed water balance modelling using Budyko hypothesis, land information and hydroclimatic data with various time scales. Hydrol Sci J 67(13):2042-2063. https://doi. org/10.1080/02626667.2022.2124873
- 63. Rao AR, Al-Wagdany A (1995) Effects of climatic change in Wabash River Basin. J Irrig Drain Eng 121(2):207-215. https://doi.org/10. 1061/(asce)0733-9437(1995)121:2(207)
- 64. Reyes-González A, Kjaersgaard J, Trooien T, Hay C, Ahiablame L (2017) Comparative analysis of METRIC model and atmometer methods for estimating actual evapotranspiration. Int J Agron. https://doi.org/10.1155/2017/3632501
- 65. Shayeghi A, Azizian A, Brocca L (2020) Reliability of reanalysis and remotely sensed precipitation products for hydrological simulation over the Sefidrood River Basin, Iran. Hydrol Sci J 65(2):296-310. https://doi.org/10.1080/02626667.2019.1691217
- 66. Smith KA, Barker LJ, Tanguy M, Parry S, Harrigan S, Legg TP, Prudhomme C, Hannaford J (2019) A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction. Hydrol Earth Syst Sci 23(8):3247-3268. https://doi.org/10.5194/hess-23-3247-2019 Solomatine DP, Shrestha DL (2009) A novel method to estimate model uncertainty using machine learning techniques. Water Resour Res. https://doi.org/10.1029/2008WR006839
- 67. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85-99. https:// doi.org/10.5194/hess-6-85-2002
- 68. Taheri M, Emadzadeh M, Gholizadeh M, Tajrishi M, Ahmadi M, Moradi M (2019) Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin. Agric Water Manag 213:782-791. https://doi.org/10.1016/j.agwat. 2018.11.013
- 69. Taheri M, Gholizadeh M, Nasseri M, Zahraie B, Poorsepahy-Samian H, Espanmanesh V (2021) Performance evaluation of various evapotranspiration modeling scenarios based on METRIC method and climatic indexes. Environ Monit Assess. https://doi.org/10.1007/ s10661-020-08840-y
- 70. Taheri M, Mohammadian A, Ganji F, Bigdeli M, Nasseri M (2022) Energy-based approaches in estimating actual evapotranspiration focusing on land surface temperature: a review of methods, concepts, and challenges. Energies. https://doi.org/10.3390/en150 41264
- 71. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183-7192. https://doi.org/10.1029/2000JD900719
- 72. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55-94. https://doi.org/10.2307/ 210739
- 73. Vrugt JA, ter Braak CJF, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res. https://doi.org/10.1029/2007wr006720
- 74. Wang G, Xia J, Che J (2009) Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai River basin in northern China. Water Resour Res. https://doi.org/10.1029/2007WR006768
- 75. Wang GQ, Zhang JY, Jin JL, Liu YL, He RM, Bao ZX, Liu CS, Li Y (2014) Regional calibration of a water balance model for estimating stream flow in ungauged areas of the Yellow River Basin. Quatern Int 336:65-72. https://doi.org/10.1016/j.quaint.2013.08. 051
- 76. Wani O, Beckers JVL, Weerts AH, Solomatine DP (2017) Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting. Hydrol Earth Syst Sci 21(8):4021-4036. https://doi.org/10.5194/hess-21-4021-2017
- 77. Xiang Y, Li L, Chen J, Xu CY, Xia J, Chen H, Liu J (2019) Parameter uncertainty of a Snowmelt Runoff model and its impact on future projections of Snowmelt Runoff in a data-scarce deglaciating River Basin. Water (switzerland). https://doi.org/10.3390/ w11112417
- 78. Xu CY, Seibert J, Halldin S (1996) Regional water balance modelling in the NOPEX area: development and application of monthly water balance models. J Hydrol 180(1-4):211-236. https://doi. org/10.1016/0022-1694(95)02888-9
- 79. Yin Z, Liao W, Lei X, Wang H (2020) Parallel hydrological model parameter uncertainty analysis based on message-passing interface. Water (switzerland) 12(10):1-14. https://doi.org/10.3390/ w12102667
- 80. Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip Rev Water 3(6):834-853. https://doi.org/10.1002/wat2.1168
- 81. Zhang Y, Zhang L, Hou J, Gu J, Huang C (2017) Development of an evapotranspiration data assimilation technique for streamflow estimates: a case study in a semi-arid region. Sustainability (switzerland). https://doi.org/10.3390/su9101658
- 82. Zhang S, Yang Y, McVicar TR, Zhang L, Yang D, Li X (2020) A proportionality-based multi-scale catchment water balance model and its global verification. J Hydrol. https://doi.org/10.1016/j.jhydrol. 2019.124446
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18ff5138-ad46-4072-bfff-bf57009190a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.