Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sedimentary mineral deposits are generally tabular and sub-horizontal, composed of one or multiple welldefined seams, arranged over large extensions, and when close to the surface, they are mined by Surface mining methods. These geometric characteristics make it suitable for the application of the strip mining method as an alternative to the traditional open-pit mining method, which allows the reduction of the truck haulage fleet and the costs associated with waste disposal. Consequently, it reduces the greenhouse gas emissions and carbon footprint associated with excavation and transportation processes. This article presents a two-stage mathematical model based on Integer Linear Programming to address the mine sequencing problem of a strip mining operation in a bauxite deposit, encompassing the allocation of a heterogeneous fleet of excavators. The model is solved through Constraint Programming, an approach first used in strip mining problems. The first stage resulted in a near-optimal solution for panels that reached 94,80% of optimality in 639 seconds for the proposed mathematical model, which is an acceptable computational time. In turn, the second stage resulted in an optimal solution for strips that is more realistic and reached 94,87% of the first stage’s objective function value in just 9 seconds.
Wydawca
Czasopismo
Rocznik
Tom
Strony
346--358
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Federal University of Rio Grande do Sul, Mining Engineering Department, Porto Alegre, RS, Brazil
- Federal University of Rio Grande do Sul, Mining Engineering Department, Porto Alegre, RS, Brazil
autor
- Federal University of Rio Grande do Sul, Mining Engineering Department, Porto Alegre, RS, Brazil
autor
- Alcoa, Long-Term Mine Planning Department, Juruti, PA, Brazil
autor
- Alcoa, Long-Term Mine Planning Department, Juruti, PA, Brazil
Bibliografia
- [1] Mariz JLV, Soofastaei A. Advanced analytics for surface mine planning. In: Soofastaei A, editor. Advanced analytics in 10.1007/978-3-030-91589-6_9.
- [2] Caccetta L, Hill SP. An application of branch and cut to open pit mine scheduling. J Glob Optim 2003;27:349e65. https:// doi.org/10.1023/A:1024835022186.
- [3] Dimitrakopoulos R, Lamghari A. Simultaneous stochastic optimization of mining complexes - mineral value chains: an overview of concepts, examples and comparisons. Int J Min Reclamat Environ 2022;36(6):443e60. https://doi.org/10.1080/ 17480930.2022.2065730.
- [4] Huo D, Sari YA, Kealey R, Zhang Q. Reinforcement learning-based fleet dispatching for greenhouse gas emission reduction in open-pit mining operations. Resour Conserv Recycl 2023;188:106664. https://doi.org/10.1016/j. resconrec.2022.106664.
- [5] Feng Y, Wang J, Bai Z, Reading L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci Rev 2019;191:12e25. https://doi.org/10.1016/j.earscirev. 2019.02.015.
- [6] Bassani MAA, Peroni RL, Guimar~aes ORA, Cantadori B, Moraes C, Vicenzi R, Alves JL, Mariz JLV, Tavares FH. Linear Programming model applied to long-term mine planning in strip mining operations. Min, Metall, Explor. 2025. https:// doi.org/10.1007/s42461-025-01185-5.
- [7] Roberts AL. Mining of bauxite in Jamaica. In: Bauxite/ alumina industry symposium 1971 (41e51); 1971. Kingston.
- [8] Whitchurch K, Cram AA, Ozawa N, Koizum K. Underground and open-cut coal scheduling using expert systems. In: Ramani RV, editor. Proceedings of the 26th application of computers and operations research in the mineral industry. State College; 1996. p. 339e46.
- [9] Baafi EY, Mirabediny H, Whitchurch K. Computer simulation of complex dragline operations. Int J Surf Min Reclamat Environ 1997;11(1):7e13. https://doi.org/10.1080/ 09208119708944049.
- [10] Mirabediny H, Baafi E. Dragline digging methods in Australian strip mines - A survey. In: Baafi EY, Cram K, Gibson GA, Hanna P, editors. Proceedings of the 1998 coal operators’ conference; 1998. p. 313e24. Wollongong.
- [11] Silva HM, Picanço E, Maurity C, Morais W, Santos HC, Guimar~aes O. Geology, mining operation and scheduling of the Paragominas bauxite mine. In: Proceedings of the 8th international alumina quality workshop; 2008. p. 11e6. Darwin.
- [12] Zuckerberg M, van der Riet J, Malajczuk W, Stone P. Optimal life-of-mine scheduling for a bauxite mine. J Min Sci 2011;47(2):158e65. https://doi.org/10.1134/ S1062739147020031.
- [13] Zhao Z, Zhang R, Sun J, Lv S. Optimization of overcast stripping technology parameters based on discrete event system simulation. Adv Civ Eng 2022:1e12. https://doi.org/ 10.1155/2022/7654893. 7654893.
- [14] Albach H. Long range planning in open pit mining. Manag Sci 1967;13(10):B549e68.
- [15] Metz HJ, Jain SK. Optimal mining and processing decisions in stratiform phosphate deposits. Interfaces 1978;9(1):1e12. https://doi.org/10.1287/inte.9.1.1.
- [16] Gershon ME. Optimal mine production scheduling: evaluation of large scale mathematical programming approaches. Int J Min Eng 1983;1(4):315e29. https://doi.org/10.1007/ BF00881548.
- [17] Busnach E, Mehrez A, Sinuany-Stern Z. A production problem in phosphate mining. J Oper Res Soc 1985;36(4): 285e8. https://doi.org/10.2307/2582414.
- [18] Klingman D, Phillips N. Integer programming for optimal phosphate-mining strategies. J Oper Res Soc 1988;39(9): 805e10. https://doi.org/10.2307/2583523.
- [19] Gershon ME, Murphy FH. Optimizing single hole mine cuts by dynamic programming. Eur J Oper Res 1989;38(1):56e62. https://doi.org/10.1016/0377-2217(89)90468-2.
- [20] Chanda EK, Wilke FL. An EDP-model of open pit short term production scheduling optimization for stratiform orebodies. In: Kim YC, editor. Proceedings of the 23rd application of computers and operations research in the mineral industry; 1992. p. 759e68. Tucson.
- [21] Samanta B, Bhattacherjee A, Ganguli R. A genetic algorithms approach for grade control planning in a bauxite deposit. In: Dessureault S, Ganguli R, Kecojevic V, Girard-Dwyer J, editors. Application of computers and operations research in the mineral industry. London: Taylor & Francis; 2005. https:// doi.org/10.1201/9781439833407.ch44C.
- [22] Adadzi E, Frimpong S. Stochastic non-linear optimization of equipment productivity in multiseam formations. J Powder Metall Min 2013;S1:1. https://doi.org/10.4172/2168-9806.S1- 001.
- [23] Azzamouri A, Fenies P, Fontane F, Giard V. Scheduling of open-pit phosphate mine extraction. Int J Prod Res 2018; 56(23):7122e41. https://doi.org/10.1080/00207543.2018.1433341.
- [24] Van Hoeve W-J, Katriel I. Global Constraints. In: Rossi F, Van Beek P, Walsh T, editors. Handbook of constraint programming. Amsterdam: Elsevier; 2006. https://doi.org/10. 1016/S1574-6526(06)80010-6.
- [25] Arora JB. More on Numerical Methods for Constrained Optimum Design. In: Introduction to optimum design. Cambridge: Academic Press; 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18fee563-d519-4f15-8564-29f6516d5743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.