PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of 3D printing MJP and FDM technology in dentistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Many printers are tempting at low prices, but later their accuracy turns out to be insufficient. The study has included checking the accuracy of printing and reproducing details of 3D printers used in dental technology and dentistry such as MultiJet Printing (ProJet MP3000, 3D Systems) and Fused Deposition Modelling (Inspire S2000, Tiertime). Design/methodology/approach: The 3D prints were created from scans of the maxillary gypsum model with the loss of left premolar. In the test, objects were set to the X and Y-axis. In order to check the dimensional differences after printing, scans of the printed models were superimposed on scans of the plaster model in the GOM Inspect V8 SR1 (Braunschweig, Germany). The focus was on the distance of scans from each other and a deviation map was created for each object. Findings: The average absolute value of deviations for each of models were equalled: FDM- for X-axis 0.06 ± 0.04 mm, for Y-axis 0.07 ± 0.04 mm; MJP- for X-axis- 0.04 ± 0.02 mm, for Y-axis- 0.06 ± 0.02 mm. A chart of arithmetic averages calculated for each tooth for the best printouts in each series show that higher deviation values exist in case of FDM printout. The models printed in the X-axis have smaller values of deviations from those printed in the Y-axis. Practical implications: MultiJet Printing technology can be used to create more precise models than the FDM, but these printouts meet the requirements of dimensional accuracy too. Originality/value: CAD / CAM technology in the future will exist in every dental technology laboratory so it is important to be aware of the way the 3D printers works. By paying attention to the quality of detail reproduction, a Dental Technician is able to choose the best 3D printer for them.
Słowa kluczowe
Rocznik
Strony
32--40
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • University Laboratory of Material Research of Medical University of Lodz, ul. Pomorska 251, 92-216 Łódź, Poland
  • University Laboratory of Material Research of Medical University of Lodz, ul. Pomorska 251, 92-216 Łódź, Poland
  • Department of Maxillofacial Surgery, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
autor
  • Department of Maxillofacial Surgery, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
Bibliografia
  • [1] P.G. McMenamin, M.R. Quayle, C.R. McHenry, J.W. Adams, The production of anatomical teaching resources using three-dimensional (3D) printing technology, Anatomical Sciences Education 7/6 (2014) 479-486, DOI: https://doi.org/10.1002/ase.1475
  • [2] P. Szymor, M. Kozakiewicz, R. Olszewski, Accuracy of open-source software segmentation and paper-based printed three-dimensional models, Journal of Cranio- Maxillofacial Surgery 44/2 (2016) 202-209, DOI: https://doi.org/10.1016/j.jcms.2015.11.002
  • [3] R. Olszewski, P. Szymor, M. Kozakiewicz, Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer, Journal of Cranio-Maxillofacial Surgery 42/8 (2014) 1847-1852, DOI: https://doi.org/10.1016/j.jcms.2014.07.002
  • [4] S.J. Esses, P. Berman, A.I. Bloom, J. Sosna, Clinical Applications of Physical 3D Models Derived From MDCT Data and Created by Rapid Prototyping, American Journal of Roentgenology 196/6 (2011) W683-W688, DOI: https://doi.org/10.2214/AJR.10.5681
  • [5] M.D.B.S. Tam, S.D. Laycock, J.R.I. Brown, M. Jakeways, 3D Printing of an Aortic Aneurysm to Facilitate Decision Making and Device Selection for Endovascular Aneurysm Repair in Complex Neck Anatomy, Journal of Endovascular Therapy 20/6 (2013) 863-867, DOI: https://doi.org/10.1583/13- 4450MR.1
  • [6] J.R. Strub, E.D. Rekow, S. Witkowski, Computer-aided design and fabrication of dental restorations, The Journal of the American Dental Association 137/9 (2006) 1289-1296, DOI: https://doi.org/10.14219/jada.archive.2006.0389
  • [7] Q. Liu, M. C. Leu, S. M. Schmitt, Rapid prototyping in dentistry: Technology and application, International Journal of Advanced Manufacturing Technology 29/3-4 (2006) 317-335, DOI: https://doi.org/10.1007/s00170- 005-2523-2
  • [8] B. Berman, 3-D printing: The new industrial revolution, Business Horizons 55/2 (2012) 155-162, DOI: https://doi.org/10.1016/j.bushor.2011.11.003
  • [9] A. Ender, A. Mehl, Accuracy of complete-Arch dental impressions: A new method of measuring trueness and precision, Journal of Prosthetic Dentistry 109/2 (2013) 121-128, DOI: https://doi.org/10.1016/S0022- 3913(13)60028-1
  • [10] B. Mihailovic, M. Miladinovic, B. Vujicic, Teleme- dicine in Dentistry (Teledentistry), in: G. Graschew, T.A. Roelofs (Eds.), Advances in Telemedicine: Applications in Various Medical Disciplines and Geographical Regions, IntechOpen, 2011, 215-230, DOI: https://doi.org/10.5772/14352
  • [11] M. Kasparova, L. Grafova, P. Dvorak, T. Dostalova, A. Prochazka, H. Eliasova, J. Prusa, S. Kakawand, Possibility of reconstruction of dental plaster cast from 3D digital study models, BioMedical Engineering OnLine 12/1 (2013) 49, DOI: https://doi.org/10.1186/1475-925X-12-49
  • [12] H. Chen, X. Yang, L. Chen, Y. Wang, Y. Sun, Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays, Scientific Reports 6/1 (2016) 19207, DOI: https://doi.org/10.1038/srep19207
  • [13] C. Lee Ventola, Medical applications for 3D printing: Current and projected uses, P&T 39/10 (2014) 704-711.
  • [14] J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dental Materials 32/1 (2016) 54-64, DOI: https://doi.org/10.1016Zj.dental.2015.09.018
  • [15] K.-Y. Lee, J.-W. Cho, N.-Y. Chang, J.-M. Chae, K.-H. Kang, S.-C. Kim, J.-H. Cho, Accuracy of three- dimensional printing for manufacturing replica teeth, The Korean Journal of Orthodontics 45/5 (2015) 217-225, DOI: https://doi.org/10.4041/kjod.2015.45.5.217
  • [16] N. Motohashi, T. Kuroda, A 3D computer-aided design system applied to diagnosis and treatment planning in orthodontics and orthognathic surgery, The European Journal of Orthodontics 21/3 (1999) 263-274, DOI: https://doi.org/10.1093/ejo/21.3.263
  • [17] Y. Ishida, T. Miyasaka, Dimensional accuracy of dental casting patterns created by 3D printers, Dental Materials Journal 35/2 (2016) 250-256, DOI: https://doi.org/10.4012/dmj.2015-278
  • [18] B. Dejak (Ed.), Compendium of making prosthetic restorations, First Edition, Med Tour Press, Warsaw, 2014 (in Polish).
  • [19] W. Ryniewicz, A.M. Ryniewicz, Ł. Bojko, The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape, Measurement 91 (2016) 620-627, DOI: https;//doi.org/10.1016j.measurement.201605.019
  • [20] A.F. Boeckler, A. Stadler, J.M. Setz, The significance of marginal gap and overextension measurement in the evaluation, The Journal of Contemporary Dental Practice 6/4 (2015) 1-12, DOI: https://doi.org/10.5005/jcdp-6-4-26
  • [21] M. Chazine, A. Casucci, A. Mazzoni, S. Grandini, C. Goracci, L. Breschi, M. Ferrari, Interfacial nanoleakage and internal cement thickness of three esthetic crown systems, Dental Materials 28/10 (2012) 1105-1111, DOI: https://doi.org/10.1016Zj.dental.2012.07.005
  • [22] J. Taczała, Dimensional analysis and details reproduction of teeth models printoits considering parameter changes of 3D printer working in the Fused Deposition Modeling technology, Medical University of Lodz, Lodz University of Technology, 2017.
  • [23] W. Czepułkowska, Dimensional analysis and detail reproduction of the printed models considering parameter changes of 3D printer working in the photopolymerization technology, Medical University of Lodz, Lodz University of Technology, 2017.
  • [24] M.F. Leifert, M.M. Leifert, S.S. Efstratiadis, T.J. Cangialosi, Comparison of space analysis evaluations with digital models and plaster dental casts, American Journal of Orthodontics and Dentofacial Orthopedics 136/1 (2009) 16.e1-16.e4, DOI: https://doi.org/10.1016/j.ajodo.2008.11.019
  • [25] A.D. Ledingham, J.D. English, S. Akyalcin, B.E. Cozad, J.C. Ontiveros, F.K. Kasper, Accuracy and mechanical properties of orthodontic models printed 3-dimensionally from calcium sulfate before and after various postprinting treatments, American Journal of Orthodontics and Dentofacial Orthopedics 150/6 (2016) 1056-1062, DOI: https://doi.org/10.1016/j.ajodo.2016.04.027
  • [26] C.S. Favero, J.D. English, B.E. Cozad, J.O. Wirthlin, M.M. Short, F.K. Kasper, Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models, American Journal of Orthodontics and Dentofacial Orthopedics 152/4 (2017) 557-565, DOI: https://doi.org/10.1016/j.ajodo.2017.06.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18fd1b77-f521-47ff-8bec-b9ba5931570c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.