PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation research of pressure decay test method for internal leakage detection of hydraulic cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leakage test is one of the acceptance tests to ensure hydraulic cylinder reliability. Under the consideration of economic and technical maturity conditions, the existing internal leakage detection methods may be difficult to achieve rapid screening. After research, the pressure decay test method is a common method of quickly testing hydraulic cylinders for internal leakage in the manufacturing industry. However, the validity of the pressure decay test method has not been theoretically verified, limiting the versatility of the method. This paper will theoretically validate the effectiveness of the pressure decay test method and provide important theoretical support for its use as a general rapid screening method for internal leakage, thereby improving the reliability and safety of hydraulic systems. Both simulation and experimental results show that there is a linear relationship between the pressure decay rate and the internal leakage rate. Especially for working pressures greater than 16 MPa, the pressure factor has an insignificant impact on the application of this method.
Rocznik
Strony
art. no. 184039
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, China
  • Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, China
autor
  • Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, China
  • Precision Manufacturing Institute, Wuhan University of Science and Technology, China
autor
  • Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, China
  • Precision Manufacturing Institute, Wuhan University of Science and Technology, China
autor
  • Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, China
  • Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, China
autor
  • Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, China
  • Precision Manufacturing Institute, Wuhan University of Science and Technology, China
Bibliografia
  • 1. An L, Sepehri N. Leakage fault identification in a hydraulic positioning system using extended Kalman filter. Proceedings of the 2004 American control conference. IEEE, 2004, 4: 3088-3093, https://doi.org/10.23919/ACC.2004.1384383.
  • 2. An L, Sepehri N. Hydraulic actuator leakage fault detection using extended Kalman filter. International Journal of Fluid Power, 2005, 6(1): 41-51,https://doi.org/10.1080/14399776.2005.10781210.
  • 3. Arne Vietor,Dmitrij Lukjanec,Zoltan Balint. Detection of hydraulic cylinder leakage. Aalborg University. 2016.9:27-28.
  • 4. Bao Y, Zhong Z, Yang S, et al. Influence of Fluid Bulk Modulus on the Target Range Pressure Building-upTime of Hydro-mechanical Transmission in Full Power Shift. Acta Armamentarii,2020,41(6):1056-1066, https://doi.org/ 10.3969/j.issn.1000-1093.2020.06.002.
  • 5. Chen P, Chua P S K, Lim G H. A study of hydraulic seal integrity. Mechanical Systems and Signal Processing, 2007, 21(2): 1115-1126, 10.3969/j.issn.1000-1093.2020.06.002
  • 6. Dui H, Zheng X, Zhao QQ, et al. Preventive maintenance of multiple components for hydraulic tension systems. Eksploatacja i Niezawodnosc –Maintenance and Reliability, 2021, 23(3), https://doi.org/10.17531/ein.2021.3.9.
  • 7. Feng B, Gong G, Yang H.Method and Experiment for Increasing Effective Fluid BulkModulus in Hydraulic Systems. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(3):219-222, 10.3969/j.issn.1000-1298.2010.03.045.
  • 8. Guo Y, Xiong G, Zeng L, et al. Modeling and predictive analysis of small internal leakage of hydraulic cylinder based on neural network. Energies, 2021, 14(9): 2456, https://doi.org/10.3390/en14092456.
  • 9. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for the cylinders: GB/T 15622-2005. 2005.
  • 10. Goharrizi A Y, Sepehri N. Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum. IEEE Transactions on Instrumentation and Measurement, 2011, 61(2): 368-378, https://doi.org/10.1109/TIM.2011.2161938.
  • 11. Goharrizi A Y, Sepehri N. A wavelet-based approach for external leakage detection and isolation from internal leakage in valve-controlled hydraulic actuators. IEEE Transactions on industrial electronics, 2010, 58(9): 4374-4384, https://doi.org/10.1109/TIE.2010.2095396.
  • 12. Goharrizi A Y, Sepehri N. A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators. IEEE transactions on industrial electronics, 2009, 57(5): 1755-1763,https://doi.org/10.1109/TIE.2009.2032198.
  • 13. Goharrizi A Y, Sepehri N, Wu Y. A wavelet-based approach for diagnosis of internal leakage in hydraulic actuators using on-line measurements. International Journal of Fluid Power, 2010, 11(1): 61-69, https://doi.org/10.1080/14399776.2010.10780998.
  • 14. Guo L, Liu Y.Hydraulic Cylinder Fault State Recognition using Probabilistic Neural Network. Development & Innovation of Machinery & Electrical Products,2014,27(6):102-104,10.3969/j.issn.1002-6673.2014.06.040.
  • 15. Gholizadeh H, Burton R, Schoenau G. Fluid bulk modulus: comparison of low pressure models. International journal of fluid power, 2012, 13(1): 7-16, https://doi.org/10.1080/14399776.2012.10781042.
  • 16. Gholizadeh H, Bitner D, Burton R, et al. Modeling and experimental validation of the effective bulk modulus of a mixture of hydraulic oil and air. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(5): 051013, https://doi.org/10.1115/1.4027173.
  • 17. Hydraulic fluid power -Cylinders -Acceptance tests -Third edition: ISO 10100, 2020.
  • 18. Jinghong Y, Zhaoneng C, Yuanzhang L. The variation of oil effective bulk modulus with pressure in hydraulic systems. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME1994,116(1):146-150, https://doi.org/10.1115/1.2900669.
  • 19. Kajaste J, Kauranne H, Ellman A, et al. Experimental validation of different models for effective bulk modulus of hydraulic fluid. The Ninth Scandinavian International Conference on Fluid Power, 2005:14-15.
  • 20. LiT,LiuM. Analysis of leakage in hydraulic cylinder. Technology and Management. 2017(16):139, 10.3969/j.issn.1000-8772.2017.16.097.
  • 21. Li L, Tao J, Huang Y, et al. Internal Leakage Detection of Hydraulic Cylinder Based on BP Neural Network. Chinese Hydraulics & Pneumatics, 2017(7):11-15, 10.11832/j.issn.1000-4858.2017.07.003.
  • 22. Li L, Huang Y, Tao J, et al. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder. Measurement, 2018, 130: 279-289,https://doi.org/10.1016/j.measurement.2018.08.029.
  • 23. Mattila J, Koivumäki J, Caldwell D G, et al. A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE-ASME Transactions on Mechatronics, 2017, 22(2): 669-680, https://doi.org/10.1109/TMECH.2017.2668604.
  • 24. Nykanen T, Esque S, Ellman A.Comparison of different fluid modes.Bath Workshop on Power Transmission and Motion Control,2000:101-110.
  • 25. Qian L, Wang Z. Improvement on the internal leakage testing method of hydraulic cylinder. Hydraulics Pneumatics & Seals, 2016,36(3):65-67, 10.3969/j.issn.1008-0813.2016.03.021.
  • 26. Qiu Z, Min R, Wang D, et al. Energy features fusion based hydraulic cylinder seal wear and internal leakage fault diagnosis method. Measurement, 2022, 195: 111042,https://doi.org/10.1016/j.measurement.2022.111042.
  • 27. Ruan J, Burton R. Bulk modulus of air content oil in a hydraulic cylinder. ASME International Mechanical Engineering Congress and Exposition. 2006, 47713: 259-269, https://doi.org/10.1115/IMECE2006-15854.
  • 28. Sheng J.Hydraulics and fluid mechanics. Beijing:China Machine Press, 1980.05:15-16.
  • 29. Shanbhag V V, Meyer T J J, Caspers L W, et al. Failure monitoring and predictive maintenance of hydraulic cylinder—state-of-the-art review. IEEE-ASME Transactions on Mechatronics, 2021, 26(6): 3087-3103, https://doi.org/10.1109/TMECH.2021.3053173.
  • 30. Shanbhag V V, Meyer T J J, Caspers L W, et al. Condition monitoring of hydraulic cylinder seals using acoustic emissions. The International Journal of Advanced Manufacturing Technology, 2020, 109(5-6): 1727-1739, https://doi.org/10.1007/s00170-020-05738-4.
  • 31. Shanbhag V V, Meyer T, Caspers L, et al. Diagnostics of seal and rod degradation in hydraulic cylinders using acoustic emissions. PHM Society European Conference,2020, 5(1):8,https://doi.org/10.36001/phme.2020.v5i1.1173.
  • 32. Totten G E. Handbook of hydraulic fluid technology. CRC press, 2011.https://doi.org/10.1201/b11225.
  • 33. Tang H B, Wu Y X, Ma C X. Inner leakage fault diagnosis of hydraulic cylinder using wavelet energy. Advanced Materials Research. Trans Tech Publications Ltd, 2010, 139: 2517-2521,https://doi.org/10.4028/www.scientific.net/AMR.139-141.2517.
  • 34. Tan A C H, Chua P S K, Lim G H. Condition monitoring of a water hydraulic cylinder by vibration analysis. Journal of testing and evaluation, 2000, 28(6): 507-512, https://doi.org/10.1520/JTE12142J.
  • 35. Tan A C H, Chua P S K, Lim G H. Fault diagnosis of water hydraulic actuators under some simulated faults. Journal of Materials Processing Technology, 2003, 138(1-3): 123-130,https://doi.org/10.1016/S0924-0136(03)00060-8.
  • 36. Tang D,Wu F, Jia P, et al. Research on Theoretical Model for Effective Bulk Modulus of Air-liquid Mixtures of Hydraulic Oil. China Mechanical Engineering,2017,28(3):300-304,333,10.3969/j.issn.1004-132X.2017.03.008.
  • 37. WangZ. Research on Hydraulic Cylinder Internal Leakage Detection Methods. Machine Tool & Hydraulics, 2016,44(10):148-150, 10.3969/j.issn.1001-3881.2016.10.045.
  • 38. Wei C, Zhou J, Yan S. Comparison of Steady and Dynamic Models for the BulkModulus of Hydraulic Oils. Acta Armamentarii, 2015,36(7):1153-1159, 10.3969/j.issn.1000-1093.2015.07.001.
  • 39. Wang J, Gong G, Yang H. Research and Online Measurement of Bulk Modulus of Hydraulic Oil. Journal of Mechanical Engineering, 2009,45(7):120-125, 10.3901/JME.2009.07.120.
  • 40. Xue X. Analysis on the fluid-leakage characteristic in gaps of the hydraulic system.Journal of Mechanical Engineering, 2004,40(6):75-80,https://doi.org/10.3901/JME.2004.06.075.
  • 41. Yunbo H, Lim G, Chua P, et al. Monitoring the condition of loaded modern water hydraulic axial piston motor and cylinder. Proceedings of the Fifth International Conference on Fluid Power Transmission and Control. 2001: 447-451,https://doi.org/10.4271/2002-01-1377.
  • 42. Yang H, Feng B, Gong G. Measurement of effective fluid bulk modulus in hydraulic system. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,2011,133(6), https://doi.org/10.1115/1.4004783.
  • 43. Zhao X, Zhang S, Zhou C, et al. Experimental study of hydraulic cylinder leakage and fault feature extraction based on wavelet packet analysis. Computers & Fluids, 2015, 106: 33-40,https://doi.org/10.1016/j.compfluid.2014.09.034.
  • 44. Zhou J. Improvement on the Internal Leakage Test of Hydraulic Cylinder. Lubrication Engineering, 2009,34(9):117-119, 10.3969/j.issn.0254-0150.2009.09.031.
  • 45. Zuber N, Bajrić R. Gearbox faults feature selection and severity classification using machine learning. Eksploatacja i Niezawodnosc –Maintenance and Reliability, 2020, 22(4): 748-756,https://doi.org/10.17531/ein.2020.4.19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18fac7a9-9c90-43a3-adb2-da26e0cef443
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.