PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free Vibration of Piezo-Nanowires Using Timoshenko Beam Theory with Consideration of Surface and Small Scale Effects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the influence of surface effects on free transverse vibration of piezoelectric nanowires (NWs). The dynamic model of the NW is tackled using nonlocal Timoshenko beam theory. By implementing this theory with consideration of both non-local effect and surface effect under simply support boundary condition, the natural frequencies of the NW are calculated. Also, a closed form solution is obtained in order to calculate fundamental buckling voltage. Finally, the effect of small scale effect on residual surface tension and critical electric potential is explored. The results can help to design piezo-NW based instruments.
PL
W pracy badano wpływ efektów powierzchniowych na poprzeczne drgania swobodne nanodrutów piezoelektrycznych (nanowires, NW). Model dynamiczny NW stworzono posługując sie nielokalna teoria belki Timoszenki. Stosując te teorie, przy uwzględnieniu zarówno efektów powierzchniowych i efektów nielokalnych, obliczono częstotliwości drgań własnych nanodrutu. Uzyskane rozwiązanie, o formie zamkniętej, pozwala także obliczyć podstawowe napięcie wyboczenia. Ponadto, zbadano wpływ efektów małej skali na resztkowe naprężenie powierzchniowe i potencjał elektryczny. Wyniki pracy mogą być użyteczne przy projektowaniu przyrządów wykorzystujących nanodruty piezoelektryczne.
Rocznik
Strony
139--152
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • [1] Wu G., Ji H., Hansen K., Thundat T., Datar R., Cote R., Hagan M.F., Chakraborty A.K., Majumdar A.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl Acad. Sci. USA, 2001, pp. 1560-1564.
  • [2] Cui Y., Zhong Z.H., Wang D.L., WangW.U., Lieber C.M.: High performance silicon nanowire field effect transistors. Nano Letters, 2003, Vol.3, No. 2, pp. 149-152.
  • [3] Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical review series B, 2004, Vol. 69, No. 16, 165410(1-5).
  • [4] Jing G.Y., Duan H.L., Sun X.M., Zhang Z.S., Xu J., Li Y.D., Wang J.X., Yu D.P.: Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical review series B, 2006, Vol. 73, No. 16, 235409(1-6).
  • [5] Wang Z.Q., Zhao Y.P., Huang Z.P.: The effects of surface tension on the elastic properties of nano structures. International journal of engineering science, 2010, Vol. 48, pp. 140-150.
  • [6] Khajeansari A., Baradaran G.H., Yvonnet J.: An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic substrate medium based on the Euler-Bernoulli beam theory. International journal of engineering science, 2012, Vol. 52, pp. 115-128.
  • [7] Song F., Huang G.L., Park H.S., Liu X.N.: continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses, International journal of solids and structures, 2011, Vol. 48, pp. 2154-2163
  • [8] Song F., Huang G.L.: Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory. Physics letters A, 2009, Vol. 373, pp. 3969-3973.
  • [9] Park H.S.: Surface stress effects on the critical buckling strains of silicon nanowires. Computational materials science, 2012, Vol. 51, pp. 396-401.
  • [10] Olsson P.A.T., Park H.S.: Atomistic study of the buckling of gold nanowires. Acta materialia, 2011, Vol. 59, pp. 3883-3894.
  • [11] Gheshlaghi B., Hasheminejad S.M.: Surface effects on nonlinear free vibration of nanobeams, Composites: part B, 2011, Vol. 42, pp. 934-937.
  • [12] Yao H., Yun G.: The effect of nonuniform surface elasticity on buckling of ZnO nanowires. Physica E, 2012, Vol. 44, pp. 1916-1919.
  • [13] Gheshlaghi B., Hasheminejad S.M.: Adsorption-induced resonance frequency shift in Timoshenko microbeams. Current Applied physics, 2011, Vol. 11, pp. 1035-1041.
  • [14] Gheshlaghi B., Hasheminejad S.M.: Vibration analysis of piezoelectric nanowires with surface and small scale effects. Current applied physics, 2012, Vol. 12, pp. 1096-1099.
  • [15] Wang G.F., Feng X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal of physics D: applied physics, 2009, Vol. 42, 155411(1-5).
  • [16] Yan Z., Jiang L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 2011, Vol. 22, 245703(1-7).
  • [17] Zhan H.F., Gu Y.T.: Surface effects on the dual-mode vibration of 110 silver nanowires with different cross-sections, Journal of physics D: applied physics, 2012, Vol. 45, 465304(1-10).
  • [18] Wang G.F., Feng X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL, 2010, Vol. 91, 56007(1-4).
  • [19] Jia-Hong Z., Xiao-Li M., Qing-Quan L., Fang G., Min L., Heng L., Yi-Xian G.: Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis. Chinese physics B, 2012, Vol. 21, No. 8, 086101.
  • [20] He J., Lilley C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Applied physics letters, 2008, Vol. 93, 263108(1-3).
  • [21] Wang G.F., Feng X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Applied physics letters, 2009, Vol. 94, 141913(1-3).
  • [22] Hasheminejad S.M., Gheshlaghi B.: Dissipative surface stress effects on free vibrations of nanowires. Applied physics letters, 2010, Vol. 97, 253103(1-3).
  • [23] Olsson P.A.T, Park H.S., Lidstr¨om P.C.: The Influence of shearing and rotary inertia on the resonant properties of gold nanowires. Journal of applied physics, 2010, Vol. 108, 104312(1-9).
  • [24] Zhan H.F., Gu Y.T.: Modified beam theories for bending properties of nanowires considering surface/intrinsic effects and axial extension effect. Journal of applied physics, 2012, Vol. 111, 084305(1-9).
  • [25] Cha S.N., Seo J.S., Kim S.M., Kim H.J., Park Y.J., Kim S.W., Kim J.M.: Sound-driven piezoelectric nanowire based nanogenerators, Advanced materials, 2010, Vol. 22, pp. 4726-4730.
  • [26] Gao Y.F.,Wang Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics, Nano letters, 2007, Vol. 7, pp. 2499-2505.
  • [27] Cady W.G.: Piezoelectriciry, New York, McGraw-Hill Book Company Inc., 1946.
  • [28] Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, second ed., New York, John Wiley & Sons, 2002.
  • [29] Reddy J.N.: Theory and Analysis of Elastic Plates and Shells, second ed., Philadelphia Taylor & Francis, 2007.
  • [30] Eringen A.C.: Nonlocal polar elastic continua, International journal of engineering science, 1972, Vol. 10, pp. 1-16.
  • [31] Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, 1983, Vol. 54, pp. 4703-4710.
  • [32] Eringen A.C.: Nonlocal Continuum Field Theories, New York, Springer-Verlag, 2002.
  • [33] Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied physics letters, 2007, Vol. 90, 231904(1-3).
  • [34] Shenoy V.B.: Size dependence of thermal expansion of nanostructures. Physical review series B, 2005, Vol. 71, 0941041-0941044.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18f98583-2a76-4e3d-bc72-43a47943ebad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.