PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biotechnological Processing of Organic and Domestic Waste and the Effect of Obtained Vermicompost on Soil Fertility

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vermicomposting in comparison to conventional composting has several advantages, such as faster treatment of organic waste and production of manure compost with lower levels of salinity. Therefore, the determination of optimal mixtures of organic waste and manure for vermicomposting and deployment of local earthworms for this procedure have important implications in plant agriculture. In this work, the vermicompost was prepared from mixtures of manure (cattle, horse and sheep) and household organic waste (wood shavings, paper, leaves, fruit and vegetable waste) in various ratios. To convert the organic waste to the vermicompost we used the local earthworm Eisenia fetida (Savigny, 1826), while a hybrid species Eisenia anderii (Iogonen, 1995), served as control. Chemical analysis of the resulting vermicompost revealed significant increase in nutrient content compared to the initial substrate: the total nitrogen (N) was increased by 79%, phosphorus (P) by 89% and potassium (K) by 62%. The efficacy of the vermicompost, which was evaluated to have high NPK content, was further studied by observing its impact on the growth of local cucumber variety Miracle F1. As a control, the plants were cultured in medium without vermicompost (black sand). In this work, we examined the effect of different proportions of vermicompost on the development and yield of cucumber seedlings. The experiments were conducted in the greenhouse of the Institute of Biochemistry, Samarkand State University. Cucumber seedlings were grown in a medium containing 10%, 20%, 30% vermicompost.
Rocznik
Strony
119--129
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Department of Genetics and Biotechnology, Institute of Biochemistry, Samarkand State University, 140104, Samarkand, Uzbekistan
  • Department of Genetics and Biotechnology, Institute of Biochemistry, Samarkand State University, 140104, Samarkand, Uzbekistan
  • Department of Genetics and Biotechnology, Institute of Biochemistry, Samarkand State University, 140104, Samarkand, Uzbekistan
  • Samarkand State University of Veterinary Medicine, Animal Husbandry and Biotechnology, Mirza Ulugbek 77, Samarkand, Uzbekistan
  • Department of Genetics and Biotechnology, Institute of Biochemistry, Samarkand State University, 140104, Samarkand, Uzbekistan
  • Khorezm Academy of Mamun, Markaz 1, 220900 Khiva, Uzbekistan
  • Department of Zoology, Faculty of Chemistry and Biology, Karshi State University, Kuchabag 17, 180100, Kashkadarya, Uzbekistan
  • National University of Uzbekistan named after Mirzo Ulug‘bek, 4 University Street, 100174, Tashkent, Uzbekistan
Bibliografia
  • 1. Abafita, R., Shimbir T., Kebede, T. 2014. Effects of different rates of vermicompost as potting media on growth and yield of tomato (Solanum lycopersicum L.) and soil fertility enhancement. Sky. J. Soil. Sci. Environ. Manag. 3, 73–77.
  • 2. Arancon, N.Q., Edwards, C.A., Bierman, P. 2006. Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresour. Technol. 97, 831–840. https://doi.org/10.1016/j.biortech.2005.04.016
  • 3. Arancon, N.Q., Edwards, C.A., Bierman, P., Metzger, J.D., Lee S., Welch, C. 2004. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiologia. 47, 731–735. https://doi.org/10.1078/0031-4056-00251
  • 4. Atiyeh, R.M., Lee S., Edwards, C.A., Arancon, N.Q., Metzger, J.D. 2002. The influence of humic acids derived from earthworm-processed organik wastes on plant growth. Bioresour. Technol. 84, 7–14. https://doi.org/10.1016/S0960-8524(02)00017-2
  • 5. Akramov, I., Axanbayev, Sh., Alikulov, B., Mukhtorova, S., Ergashev, A., Ismailov, Z. 2023. Plant growth-promoting properties of endophytic bacteria isolated from some xerophytic plants distributed in arid regions (Uzbekistan). Plant Science Today, 10(4), 228–37. https://doi.org/10.14719/pst.2725
  • 6. Alikulov, B., Gulboev, D., Maxammadieva, D., Tillaeva, Z., Olimjonova, S., Ismailov, Z. 2023. Isolation and characterization of endophytic bacteria from some halophytes in saline desert regions of Uzbekistan. Biodiversitas, Journal of Biological Diversity, 24, 12791288. https://doi.org/10.13057/biodiv/d240270
  • 7. Atiyeh, R.M., Subler, S., Edwards, S.A., Bachman, G., Metzger, J.D., Shuster W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44, 579–590. https://doi.org/10.1078/S0031-4056(04)70073-6
  • 8. Atiyeh, R.M., Arancon, N., Edwards, C.A., Metzger, J.D. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour. Technol. 75, 175–180. https://doi.org/10.1016/S0960-8524(00)00064-X
  • 9. Atiyeh, R.M., Edwards, C.A., Subler, S., Metzger, J.D. 2000. Earthworm-processed organik wastes as components of horticultural potting media for growing marigold and vegetable seedlings. Compos. Sci. Util. 8, 215–223.
  • 10. Atiyeh, R.M., Edwards, C.A., Subler, S., Metzger, J.D. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: Effects on physicochemical properties and plant growth. Bioresour. Technol. 78, 11–20. https://doi.org/10.1016/S0960-8524(00)00172-3
  • 11. Azarmi, R., Giglou, M.T., Hajieghrari, B. 2009. The effect of sheep-manure vermicompost on quantitative and qualitative properties of cucumber (Cucumis sativus L.) grown in the greenhouse. Afr. J. Biotechnol. 8, 4953–4957. https://www.ajol.info/index.php/ajb/article/view/65198
  • 12. Azarmi, R., Giglou, M.T., Taleshmikail, R.D. 2009. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 7, 2397–2401.
  • 13. Abdullaev, I., Bekchanova, M., Gandjaeva, L., Kholmatov, B., Raхmatullayev, A., Tajiyev, Z., Razzakov, K., Matyakubov, Z., Doschanova, M., Ruzmetov, R. 2023. Checklist of the earthworm fauna (Oligochaeta: Lumbricidae) of Uzbekistan. Biodiversitas, 24(8), 4392–4401. https://doi.org/10.13057/biodiv/d240820
  • 14. Bachman, G.R., Metzger, J.D. 2013. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour. Technol. 99, 3155–3161.
  • 15. Basheer, M., Agrawal, O.P. 2013. Effect of vermicompost on the growth and productivity of tomato plant (Solanum Lycopersicum) under field conditions. International Journal of Recent Scientific Research Research. 4(3), 247–249, March.
  • 16. Bhat, N.R., Suleiman, M.S., Al-Mulla, L., Albaho, M. 2008. Comparision of growing substrates for organik tomato, cauliflower and iceberg lettuce production under greenhouse conditions. J. Agric. Biodivers. Res. 2, 55–62
  • 17. Edwards, C.A., Arancon, N.Q., Vasko-Bennett, M., Askar, A., Keeney, G. 2010. Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymna vittatum) (Fabr.) on cucumbers and tobacco hornworm (Manduca sexta) (L.) on tomatoes. Pedobiologia, 53(2), 141–148. https://doi.org/10.1016/j.pedobi.2009.08.002
  • 18. Ergasheva, X.I., Ismoilov, Z.F., Raxmatullayev, A.Y.,, Raxmatullayev, Y.Sh., Davronov, B.O., Raxmatillayeva, Y.B. 2024. Biotechnology of organic animal waste processing based on Eisenia fetida (Savigny, 1826). Journal of Ecological Engineering, 25(5), 70–78. https://doi.org/10.12911/22998993/185389
  • 19. Ergasheva, X.I., Muhammadiyev, R.B. 2024. Hayvonlar organik chiqindilarini vermikompostlash istiqbollari, tuproqlarning ekologik va meliorativ holatini yaxshilash // International scientific journal science and innovation special. 6, 542–546. https://doi.org/10.5281/zenodo.10935325
  • 20. Eriksen-Hamel, N.S., Whalen, J.K. 2007. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agric. Ecosyst. Environ. 120, 442–448. https://doi.org/10.1016/j.agee.2006.11.004
  • 21. Edwards, N.Q., Atiyeh, R., Metzger, J.D. 2004. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour. Technol. 93, 139–144. https://doi.org/10.1016/j.biortech.2003.10.015]
  • 22. Gafurova, L.A., Ergasheva, O.X., 2020. Bioindication in ecological assessment of eroded soils in mountain areas // Journal of Critical Reviews. 7(2), 288–291. http://dx.doi.org/10.31838/jcr.07.02.53
  • 23. Hameeda, B., Harini, G., Rupela, O.P., Reddy, G. 2007. Effect of composts or vermicomposts on sorghum growth and mycorrhizal colonization. Afr. J. Biotechnol. 6, 9–12 https://academicjournals.org/journal/AJB/article-full-text-pdf/A9D13656382.pdf
  • 24. Ievinsh, G. 2011. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul. 65, 169–181.
  • 25. Świątek, J., Spitzer, T., Grobelak, A., Kacprzak, M. 2019. Effects of biochar addition on vermicomposting of food industry sewage sludge. Journal of Ecological Engineering. 20(3), 36–45. https://doi.org/10.12911/22998993/97242
  • 26. Jankauskiene, J., Laužike, K., Kavaliauskait, D. 2022. Effects of vermicompost on quality and physiological parameters of cucumber (Cucumis sativus L.) Seedlings and Plant Productivity. Horticulturae, 8, 1009. https:// doi.org/10.3390/horticulturae8111009
  • 27. Joshi, R., Singh, J., Vig, A.P. 2015. Vermicompost as an effective organik fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 14, 137–159. https://link.springer.com/article/10.1007/s11157-014-9347-1
  • 28. Kujawska, J., Wójcik-Oliveira, K. 2019. Vermicomposting on the concentration of heavy metals in soil with drill cuttings. Journal of Ecological Engineering. 20(1), 152–157. https://doi.org/10.12911/22998993/93868
  • 29. Kaciu, S., Babaj, I., Sallaku, G., Balliu, A. 2011. The influence of vermicompost on plant growth characteristics and stand establishment rate of pepper (Capsicum annuum L.) seedlings under saline conditions. J. Food Agric. Environ. 9, 488–490.
  • 30. Lishchuk, A., Parfenyk, A., Horodyska, I., Boroday, V., Ternovyi, Y., Tymoshenko, L. 2023. Environmental risks of the pesticide use in agrocenoses and their management. Journal of Ecological Engineering, 24(3), 199–212. https://doi.org/10.12911/22998993/158537
  • 31. Lakin, G.F. 1990. Biometrics. Moscow (Russia): Higher school, 352.
  • 32. Lazcano, C., Domínguez, J. 2011. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In Soil Nutrients; Miransari, M., Ed.; Publisher Nova Science: Iran, 1–23.
  • 33. Mavura, M., Mtaita, T., Mutetwa, M., Musimbo, N. 2017. Influence of vermicomposted soil amendments on plant growth and dry matter partitioning in seedling production. Int. J. Hort. Sci. Ornam. Plants, 3, 37–46.
  • 34. Mixtures, D.F., Bouchaib, I., Zaina, I., Lalla, F., Laila, B. 2022. Limiting the hurtful oxidative stress and seasonal physiological adaptations in seashore paspalum through the use of banana waste biochar and compost. Journal of Ecological Engineering, 23(1), 216. https://doi.org/10.12911/22998993/143940
  • 35. Shopova, N., Panayotov, N., Kozarov, H. 2019. The effect of vermicompost with different origins on the development of cucumber seedlings Scientific Papers. Series B, Horticulture. 63(1). https://horticulturejournal.usamv.ro/pdf/2019/issue_1/Art50.pdf
  • 36. Omar, M.N.A., El-Kattan, M.H. 2003. Utilization of microbial inoculants for the enhancement of some vegetables yield under protected agriculture system ISHS Acta Horticulturae 608: International Symposium on The Horizons of Using Organik Matter and Substrates in Horticulture) https://doi.org/10.17660/ActaHortic.2003.608.17
  • 37. Ortikov, T., Shoniyozov, B., Makhmatmurodov, A., and Mashrabov, M. 2023. Influence of mineral and organic fertilizers on the properties of serozem-meadow soils, nutritional dynamics and productivity of amaranth. E3S Web of Conferences. 462(2017), AFE-2023. https://doi.org/10.1051/e3sconf/202346202017
  • 38. Papathanasiou, F., Papadopoulos, I., Tsakiris, I., Tamoutsidis, E. 2012. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agric. Env. 10, 677–682.
  • 39. Pour, A.A., Moghadam, A., Ardebili, Z.O. 2013. The effects of different levels of vermicompost on the growth and physiology of cabbage seedlings. Int. Res. J. Appl. Basic Sci. 4(9), 2726–2729.
  • 40. Ramy, S., Nada., Ashmawi, E., Ashmawi., Emad, M., Timothy, O., Randhir., Ahmed, A., Elateeq. 2022. Effect of organic manure and plant growth promoting microbes on yield, quality and essential oil constituents of fennel bulb (Foeniculum vulgare Mill.) Journal of Ecological Engineering, 23(5), 149164. https://doi.org/10.12911/22998993/147252
  • 41. Sallaku, G., Babaj, I., Kaciu, S., Balliu, A. 2009. The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. J. Food Agric. Environ. 7, 869–872. https://www.researchgate.net/ profile/Astrit-Balliu/publication/259460946
  • 42. Singh, R., Sharma, R.R., Kumar, S., Gupta, R.K., Patil, R.T. 2008. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × Ananassa Duch.). Bioresour. Technol. 99, 8507–8511. https:// doi.org/10.1016/j.biortech.2008.03.034
  • 43. Weber, J. 2004. Function of organik matter in soil. Homintech company. http://www.Humintech.Com/001/ articles/article_definition_of_soil_organik_matter. html [accessed on 12 June 2011].
  • 44. Zaller, J.G. 2007. Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. Eur. J. Soil Biol. 43, 332–336. https://doi.org/10.1016/j.ejsobi.2007.08.020
  • 45. Ergasheva, Kh.I. 2024. Selection of optimal substrate conditions for vermiculture and indicators of vermiculture development on different nutrient media. Eurasia Science LX International scientific and practical conference. March 31, 2024 Research and Publishing Center Actualnots. RF, Moscow, Russia March, 31, 19–24.
  • 46. Ergasheva, Kh.I. 2021. Biotechnological basis for obtaining vermicompost. Bulletin of science and practice. 11, 127–132. https://doi.org/10.33619/2414-2948/72/15
  • 47. Preparation and use of compost. Vermicompost and method, Sherbet Suu. Bishkek – 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18f52799-4da6-4f2f-94d7-272bd5715c2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.