PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of the data on the surface currents and wind parameters generated by numerical models on the Szczecin Lagoon area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the investigation of available surface currents and wind parameters for employing them in order to predict the survivor movement in the Szczecin Lagoon waters. For this purpose, the surface currents and wind parameters were generated by selected numerical models and the wind parameters were also measured with the telemetry devices. In this paper, the PM3D hydrodynamic model and the NEMS, ECMWF, GFS weather forecast models have been investigated. The measurements of the wind parameters, recorded at the Brama Torowa I and Trzebież stations, were also analyzed. As part of the research, an expert method was used to evaluate the surface currents parameters. In turn, the method based on comparing the forecasted wind parameters with the measured wind parameters was applied in order to assess uncertainties of these parameters. The comparative analyses of the data on the surface currents and wind parameters have been done and probabilistic models for uncertainties of these forecasted parameters have been formulated. Additionally, relations between the surface currents speeds and the wind speeds, in the case when their directions were consistent, have been also discovered.
Twórcy
autor
  • Maritime University of Szczecin, Szczecin, Poland
autor
  • Maritime University of Szczecin, Szczecin, Poland
autor
  • Maritime University of Szczecin, Szczecin, Poland
Bibliografia
  • 1. Biuro Hydrograficzne Marynarki Wojennej. Locja Bałtyku. Wybrzeże Polskie (502), 2009. Wydanie IX.
  • 2. Borkowski, P., Inference engine in an intelligent ship course-keeping system. Computational Intelligence and Neuroscience, 2017. 2561383: p. 1-9. - doi:10.1155/2017/2561383
  • 3. Breivik, ., Allen, A.A., An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems, 2008. 69(1–2): p. 99–113.
  • 4. Bugajski, G., Pleskacz, K., Modyfikacja metody wyznaczania obszaru poszukiwań podczas akcji ratowniczych na akwenie otwartym. Autobusy, Technika, Eksploatacja, Systemy Transportowe, 2016. 12: p. 861-864.
  • 5. Burciu, Z., Niezawodność akcji ratowniczej w transporcie morskim. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa, 2012.
  • 6. Cho, K.H., Li, Y., Wang, H., Park, K.S., Choi, J.Y., Shin, K.I., Kwon, J.I., Development and Validation of an Operational Search and Rescue Modeling System for the Yellow Sea and the East and South China Seas. Journal of Atmospheric and Oceanic Technology, 2014. 31: p. 197–215. - doi:10.1175/JTECH-D-13-00097.1
  • 7. Di Maio, A., Martin, M.V., Sorgente, R., Evaluation of the search and rescue LEEWAY model in the Tyrrhenian Sea: a new point of view. Natural Hazards and Earth System Sciences, 2016. 16, p: 1979–1997. - doi:10.5194/nhess-16-1979-2016
  • 8. IAMSAR MANUAL, International Aeronautical and Maritime Search and Rescue Manual, Mission Co-ordination, II. IMO/ICAO. London, 2013.
  • 9. Kasyk, L., Kijewska, M., Kowalewski, M., Leyk, M., Pyrchla, J., Modeling of Surface currents impact in the harbor using graph theory. Scientific Journals of the Marine University of Szczecin, 2016. 46, p: 189–196.
  • 10. Kijewska, M., Route prediction for a person in water drifting in chosen basins using graph theory. Scientific Journals of the Marine University of Szczecin, 2017. 50, p: 45–51.
  • 11. Kowalewski, K., Kowalewska-Kalkowska, H., Sensivity of the Baltic Sea level prediction to spatial model resolution. Journal of Marine Systems, 2017. 173, p: 101-113. - doi:10.1016/j.jmarsys.2017.05.001
  • 12. Kowalewski, K., Kowalewska-Kalkowska, H., Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and the Szczecin Lagoon. Boreal Environment Research, 2011. 16(Supplement A): p. 27–41.
  • 13. Li, W., Liu, W.Y., Methods of determining search area for SAR at sea. Preceedings of 13th International Conference on Service Systems and Service Management. China. 24–26 June 2016. p. 359–368. - doi:10.1109/ICSSSM.2016.7538461
  • 14. Pietrzykowski, Z., Borkowski, P., Wołejsza, P., NAVDEC – navigational decision support system on a sea-going vessel. Scientific Journals of the Maritime University of Szczecin, 2012. 30: p. 102–108.
  • 15. PM3D. Available online: www.model.ocean.univ.gda.pl (accessed on 12 June 2017).
  • 16. Pyrchla, J., Kowalewski, M., Leyk-Wesołowska, M., Pyrchla, K., Integration and Visualization of the Results of Hydrodynamic Models in the Maritime Network – Centric GIS of Gulf of Gdańsk. Proceedings of 2016 Baltic Geodetic Congress. Poland. 2–4 June 2016. p. 159–164. - doi:10.1109/BGC.Geomatics.2016.36
  • 17. Pyrchla, K., Pyrchla, J., Kasyk, L., Kijewska, M., Leyk-Wesołowska, M., Study of the Flow Dynamics of Surface Water Masses in the Area of the Coastal Gulf of Gdańsk. Proceedings of 2017 Baltic Geodetic Congress. Poland. 22–25 June 2017. p. 326–330. - doi:10.1109/BGC.Geomatics.2017.18
  • 18. SAR. Available online: www.sar.gov.pl/news/3/type (accessed on 26 July 2018).
  • 19. SatBałtyk. Available online: www.satbaltyk.iopan.gda.pl (accessed on 12 June 2017).
  • 20. Shchekinova, E., Kumkar, Y., Coppini, G., Numerical reconstruction of trajectory of small-size surface drifter in the Mediterranean sea. Ocean Dynamics, 2016. 66: p. 153–161 - doi:10.1007/s10236-015-0916-9
  • 21. Stanichny, S.V., Kubryakov, A.A., Soloviev, D.M., Parameterization of surface wind-driven currents in the Black Sea using drifters, wind, and altimetry data. Ocean Dynamics, 2016. 66: p. 1–10. - doi:10.1007/s10236-015-0901-3
  • 22. Szczecin Lagoon, Projekty unijne. Modernizacja toru wodnego. Available online: http://www.ums.gov.pl/projekty_unijne/ModernizacjaToruWodnego/mapa_mod_toru.jpg (accessed on 08 June 2018).
  • 23. Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.-B.., Exploiting AIS data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Transactions on Intelligent Transportation Systems, 2018. 19(5): p. 1559– 1581. - doi:10.1109/TITS.2017.2724551
  • 24. Vettor, R., Soares, C.G., Computational system for planning search and rescue operations at sea. Procedia Computer Science, 2015. 51: p. 2848–2853. - doi:10.1016/j.procs.2015.05.446
  • 25. Wang, S., Nie, H., Shi, C., A drifting trajectory prediction model based on object shape and stochastic motion features. Journal of Hydrodynamics, 2015. 26: p. 951–959. - doi:10.1016/S1001-6058(14)60104-9
  • 26. WINDY. Available online: www.windy.com (accessed on 12 June 2017).
  • 27. Zhang, J., F., Teixeira, A.P., Soares, C.G., Yan, X.P., Probabilistic modelling of the drifting trajectory of an object under the effect of wind and current for marine search and rescue. Ocean Engineering, 2017. 129: p. 253–264. - doi:10.1016/j.oceaneng.2016.11.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18f24028-ba32-4265-82fd-0437b9f16396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.