PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deformations of soil masses under the action of human-induced factors

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Deformacje masy gleby pod działaniem czynników człowieka
Języki publikacji
EN
Abstrakty
EN
Significant changes in the stress-strain state cause a change in the soil profile of the massif, which is affected by various physical and chemical factors. In particular, groundwater filtration, mass transfer, heat transfer, dissolution and leaching of soil masses. This can lead to various types of accidents. Therefore, the study of the stress-strain state of the soil massif is an important topic. Nonlinear dependences in the form of polynomials of the modulus of deformation and Lame coefficients on the concentration of salt solutions and their temperature have been received in this research based on experimental research and their statistical processing. This allowed improving the mathematical model of the stress-strain state of the soil taking into account the nonlinear deformation processes occurring in the soil masses under the presence and filtration of saline solutions in non-isothermal conditions.
PL
Znaczące zmiany stanu naprężeniowo-odkształceniowego powodują zmianę profilu glebowego masywu, na który wpływają różne czynniki fizyczne i chemiczne. W szczególności filtracja wód gruntowych, przenikanie masy, przenoszenie ciepła, rozpuszczanie i wymywanie mas glebowych. Może to prowadzić do różnego rodzaju wypadków. Dlatego ważnym tematem jest badanie stanu naprężeniowo-odkształceniowego masywu glebowego. W niniejszych badaniach otrzymano nieliniowe zależności w postaci wielomianów modułu odkształcenia i współczynników Lame’a od stężenia roztworów soli i ich temperatury w oparciu o badania eksperymentalne i ich obróbkę statystyczną. Pozwoliło to na udoskonalenie modelu matematycznego stanu naprężeniowo-odkształceniowego gruntu uwzględniającego nieliniowe procesy odkształceń zachodzących w masach gruntu pod wpływem obecności i filtracji roztworów soli w warunkach nieizotermicznych.
Rocznik
Strony
111--114
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • National University of Water and Environmental Engineering, Department of Highways, Bases and Foundations, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Land Management, Cadastre, Land Monitoring and Geoinformatics, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Computer Sciences and Applied Mathematics, Rivne, Ukraine
  • National University of Water and Environmental Engineering, Department of Computer Sciences and Applied Mathematics, Rivne, Ukraine
Bibliografia
  • [1] Abdo A. M. A.: Utilizing a Simple Numerical Model in Discrete Element Analysis to Simulate Flow Time and Number Tests of Asphalt Mixes. Jou. Eng. Res. 11(2), 2017, 39 [https://doi.org/10.24200/tjer.vol11iss2pp39-49].
  • [2] Ait M'Barek S. et al.: Multi‐Site Calibration and Validation of SWAT Model for Hydrologic Modeling and Soil Erosion Estimation: A Case Study in El Grou Watershed, Morocco. Ecol. Eng. Environ. Technol. 22(6), 2021, 45–52 [https://doi.org/10.12912/27197050/141593].
  • [3] Al-Abdul Wahhab H. I., Abdullah G. M. S.: Prediction of Permanent Deformation of Foamed and Emulsified Sulfur Asphalt Soils Mixes. Jou. Eng. Res. 15(2), 2018, 1 [https://doi.org/10.24200/tjer.vol13iss1pp1-21].
  • [4] Boyko I. P. et al.: Influence of hydrogeological conditions on the deformation of the fundamentals of existing foundations. Fundamentals and foundations 24, 1991, 23–30.
  • [5] Gerasimov I. et al.: Hydrodynamic features of the floating water outlet from a pumping station. Journal of Water and Land Development 48 (1) 2020, 162–171 [https://doi.org/10.24425/jwld.2021.136159].
  • [6] Hetnarski R. B.: Encyclopedia of thermal stresses. Springer Reference, Dordrecht 2014.
  • [7] Hutniczak A. et al.: The concept of reclamation in the life sciences to new environmental challenges. Inż. Ekolog. 20(4), 2019, 14–20 [https://doi.org/10.12912/23920629/113633].
  • [8] Jafari M. et al.: Dynamic approachs for system identification applied to deformation study of the dams. Acta Geod. Geophys. 50(2), 2015, 187–206 [https://doi.org/10.1007/s40328-014-0091-3].
  • [9] Jafari M.: Deformation modelling of enriched by inter-element continuity condition based on multi-sensor data fusion. Applied Mathematical Modelling 40(21-22), 2016, 9316–9326 [https://doi.org/10.1016/j.apm.2016.06.010].
  • [10] Kaliukh I. et al.: Decreasing Service Life of Buildings Under Regular Explosion Loads. Cybernetics and Systems Analysis 54(6), 2018, 948–956 [https://doi.org/10.1007/s10559-018-0098-9].
  • [11] Kaliukh I. et al.: Geotechnical Issues of Landslides in Ukraine: Simulation, Monitoring and Protection. Proceedings of China-Europe Conference on Geotechnical Engineering. Springer International Publishing, Cham 2018, 1466–1469.
  • [12] Klimov S. et al.: Limiting horizontal water filtration using drainage-screened modules. Journal of Water and Land Development 43(1), 2019, 90–95 [https://doi.org/10.2478/jwld-2019-0066].
  • [13] Kuzlo M. et al.: Deformations of Soil Massifs Under the Existence of Saline Solutions with Different Concentration and Temperature. Proceedings of the 2nd International Conference on Building Innovations. Springer International Publishing, Cham 2020, 123–131.
  • [14] Kuzlo M. T., Filatova I. A.: Investigation of the influence of the concentration of saline solutions on the deformation characteristics of soils. Bulletin National University of Water and Environmental Engineering, 31, 2006, 175–181.
  • [15] Kuzlo M. T.: Experimental and theoretical studies of soil masses’ deformations under the action of human induced factors. NUWEE, Rivne 2019.
  • [16] Kuzlo M. T. et al.: Mathematical modelling of soil massif's deformations under its drainage. International Journal of Applied Mathematics 31(6), 2018 [https://doi.org/10.12732/ijam.v31i6.5].
  • [17] Kuzlo M. T. et al.: Experimental studies of saline solutions filtrations depending on their concentration and 114an dunder114. Automobile roads and road construction 107, 2020, 57–62.
  • [18] Methods of laboratory determination of durability and deformation characteristics. 2nd ed. (GOST 12248 – 96). State Committee of Ukraine for Urban Development and Architecture, Kyiv 01/04/1991.
  • [19] Sergeeva E. M. (ed): Soil Science. Moscow State University, Moscow 1983.
  • [20] Vlasyuk A. et al.: Mathematical Modelling of Spatial Deformation Process of Soil Massif with Free Surface. Advances in inteligent systems and computing IV, 1080, 2020, 107–120 [https://doi.org/10.1007/978-3-030 33695-0_9].
  • [21] Vlasyuk A. P. et al.: Computer modeling of heat and mass transfer effect on the three-dimensional stressed-strained state of soil massif. 18th International Multidisciplinary Scientific Geoconference SGEM, 18(1.2), 2018, 153–160 [https://doi.org/10.5593/sgem2018/1.2/S02.020].
  • [22] Vlasyuk A. P. et al.: Mathematic and computer modeling of cohesion effect forces on spatial deformation processes of soil massif. Math. Model. Comput. 7(1), 2020, 196–205 [https://doi.org/10.23939/mmc2020.01.196].
  • [23] Yamada Y., Ishihara K.: Anisotropic deformation characteristics of 114an dunder three dimensional stress conditions. Soils and Foundations 19(2), 1979, 79–94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18f1f8ee-104a-4306-b7e0-48292424ddc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.