PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterisation of magnesium-doped nanoparticles by the microwave combustion technique for novel applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, synthesis and characterisation of magnesium-substituted Ni–Fe nanoparticles using microwave combustion are carried out. Using Schererr’s formula, the crystal size of the synthesised magnesium-substituted Ni–Fe nanoparticles is determined, which falls between 18 and 32 nm. Additionally, agglomerative spherical-shaped nanoparticles have been observed by high-resolution scanning electron microscopy investigation, and energy-dispersive X-ray spectroscopy is used to determine the elemental composition of Mg, Ni, Fe, and O. With the aid of diffuse reflectance spectroscopy, band gap values for the produced samples are determined to fall between 3.35 and 2.32 eV. Metal–oxygen tetrahedral sites are represented by the absorption band at 583 cm -1 , while octahedral sites are linked to the absorption bands at 436 and 457 cm-1. The nickel ferrite nanoparticles being replaced with magnesium show ferromagnetic hysteresis curves.
Wydawca
Rocznik
Strony
80--92
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of H&S, KG Reddy College of Engineering & Technology Hyderabad, India
  • Department of CSE (AIML) Jain (Deemed to be University), Kanakapura Bengaluru, India Arun Vignesh, Natarajan
  • Department of Electronics and Communications Engineering, Gokaraju Rangaraju Institute of Engineering and Technology (GRIET)Hyderabad, India
autor
  • Department of Mechanical Engineering, MVJ College of Engineering Bangalore, India
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Department of Civil Engineering, College of Engineering, King Saud University Riyadh, Saudi Arabia
  • Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Al-Mustaqbal Babylon, Iraq
  • Department of Electrical Engineering, Al-Kitab University Kirkuk, Iraq
  • Sustainability Solutions Research Lab Veszprém, Hungary
Bibliografia
  • [1] Zhu, X., Zhang, L., Zou, G., Chen, Q., Guo, Y., Liang, S., et al., Carboxylcellulose hydrogel confined-Fe3O4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B. Int. J. Biol. Macromol. 2021, 180:792–803
  • [2] Hashim, M., Alimuddin, Kumar, S, Shirsath, S. E., Kotnala, R. K., Shah, J., et al., Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys., 2013, 139: 364–374.
  • [3] Wang, J., Ren, F., Yi, R., Yan, A., Qiu, G., Liu, X., Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloy. Compd., 2009, 479: 791–796.
  • [4] Jain, P., Srivastava, S., Rana, R. S., Gupta, N., Synthesis and characterization of nickel ferrite(NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today Proc., 2015, 2(4–5): 3750–3757.
  • [5] Srivastava, M., Chaubey, S., Animesh, K. O., Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys., 2009, 118: 174–180.
  • [6] Nabiyouni, G., Jafari Fesharaki, M., Mozafari, M., Amighian, J., Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett., 2010, 27: 12.
  • [7] Kothawale, M. M., Tangsali, R. B., Naik, G. K., Budkuley, J. S., Characterization and magnetic properties of nanoparticle Ni1−xZnxFe2O4 ferrites prepared using microwave assisted combustion method. J. Supercond. Nov. Magn., 2012, 25: 1907–1911.
  • [8] Mirzaee, S., Kalandaragh, Y. A., Rahimzadeh, P., Modified co-precipitation process effects on the structural and magnetic properties of Mn-doped nickel ferrite nanoparticles. Solid. State Sci., 2020, 99: 106052.
  • [9] Swapnil, A. J., Sandeep, B. S., Mangesh, V. K., Supriya, R. P., Jadhav, K. M., Magneto- structural and photocatalytic behavior of mixed Ni–Zn nanospinel ferrites: visible light- enabled active photodegradation of Rhodamine B. J. Mater. Sci. Mater. Electron., 2020, 31: 11352–11365.
  • [10] Raghavender, A. T., Zadro, K., Pajic, D., Skoko, Z., Billiskov, N., Effect of grain size on the Néel temperature of nanocrystalline nickel ferrite. Mater. Lett., 2010, 64: 1144–1146.
  • [11] Gore, S. K., Jadhav, S. S., Tumberphale, U. B., Shaikh, S. M., Naushad, M., Mane, R. S., Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite. Solid. State Sci., 2017, 3: 1293–2558. doi: 10.1016/j.solidstatesciences.2017.10.009
  • [12] Bhaskera, S. U., Veeraswamy, Y., Jayababu, N., Ramanareddy, M. V., Chromium substitution effect on the structural, optical, electrical and magnetic properties of nickel ferrite nano particles, synthesized by an environmentally benign auto combustion method. Mater. Today Proc., 2016, 3: 3666–3672.
  • [13] Al-Ghamdi, A. A., Al-Hazmi, F. S., Leena, S., Memesh, F. S., ShokrLyudmila,, Bronstein, M., Evolution of the structure, magnetic and optical properties of Ni1−xCuxFe2O4 spinel ferrites prepared by soft mechanochemical method. J. Alloy. Compd., 2017, 712: 82–89.
  • [14] Vijaya, J. J., Sekaran, G., Bououdina, M., Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakeslike nanostructures. Ceram. Int., 2015, 41: 15–26.
  • [15] Sundararajan, M., Sailaja, V., Kennedy, L. J., Vijaya, J. J., Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Inter., 2017, 43: 540–548
  • [16] Gherca, D., Puli, A., Cornei, N., Cojocariu, A., Nica, V., Caltun, O., Synthesis, characterization and magnetic properties of MFe2O4 (M = Co, Mg, Mn, Ni) nanoparticles using ricin oil as capping agent. J. Magn. Magn. Mater., 2012, 324: 3906–3911.
  • [17] Mirzaee, S., Kalandaragh, Y. A., Rahimzadeh, P., Modified co-precipitation process effects on the structural and magnetic properties of Mn- doped nickel ferrite nanoparticles. Solid. State Sci., 2020, 99: 106052.
  • [18] Ahmed, M. A., Mansour, S. F., EI-Dek, S. I., Investigation of the physico-chemical properties of nanometric NiLa ferrite/PST matrix. Solid. State Ion., 2010, 181: 1149–1155.
  • [19] Zhang, C. Y., Shen, X. Q., Zhou, J. X., Jing, M. X., Cao, K., Synthesis and magnetic properties of nanocomposite Ni1−xCoxFe2O4–BaTiO3 fibers by organic gel-thermal decomposition process. J. Sol-Gel Sci. Technol., 2007, 42: 95.
  • [20] Kumar, L., Kar, M., Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4). Ceram. Int., 2012, 38: 4771–4782.
  • [21] Sundararajan, M., Kennedy, L. J., Vijaya, J. J., Aruldoss, U., Microwave combustion synthesis of Co1−xZnxFe2O4(0 ≤ x ≤ 0.5): Structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2015, 140: 421–430.
  • [22] Sundararajana, M., Kennedya, L. J., Nithya, P., Vijaya, J. J., Bououdina, M., Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phy. Chem. Solids. 2017, 108: 61–75.
  • [23] Dhiwahar, A. T., Sundararajan, M., Sakthivel, P., Dash, C. S., Yuvaraj, S., Microwave-assisted combustion synthesis of pure and zinc-doped copper ferrite nanoparticles: Structural, morphological, optical, vibrational, and magnetic behavior. J. Phy. Chem. Solids,. 2020, 138: 109257.
  • [24] Huang, S., Xu, Y., Xie, M., Xu, H., He, M., Xia, J., et al., Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf. A: Physicochem. Eng. Asp., 2015, 478: 71–80.
  • [25] Issarapanacheewin, S., Wetchakun, K., Phanichphat, S., Kangwansupamonkon, W., Watchakun, N., A novel CeO2/Bi2WO6 composite with highly enhanced photocatalytic activity. Mater. Lett., 2015, 156: 28–31.
  • [26] Zhou, X., Yang, H., Wang, C., Mao, X., Wang, Y., Yang, Y., et al., Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C., 2010, 114: 17051–17061.
  • [27] Sajjia, M., Oubaha, M., Prescott, T., Olabi, A. G., Development of cobalt ferrite powder preparation employing the sol-gel technique and its structural characterization. J. Alloy. Compd., 2010, 506: 400–406.
  • [28] Shkir, M., Chandekar, K. V., Alshahrani, T., Kumar, A., AlFaify, S., A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. J. Mater. Res., 2020, 35: 1–12.
  • [29] Kanithan, S., Vignesh, N. A., Baskar, S., Nagaraja, S., Abbas, M., Aabid, A., et al., Structural morphology and optical properties of strontium-doped cobalt aluminate nanoparticles synthesized by the combustion method. Materials, 2022, 15: 8180. doi: 10.3390/ma15228180
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18f162a6-8ed0-487a-9b16-2f0df327fdb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.