PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of organophilization and interlamellar silylation of montmorillonite on compatiblization of polymer composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium montmorillonite (Na-Mt) was modified by cetyltriemethylammoniumbromide (CTAB) through cation exchange technique followed by grafting with 3-aminopropyltriethoxysilane (APT). The effects of organophillic surface treatments of montmorillonite on compatibilization of natural rubber (NR) /acrylonitrile butadiene rubber (NBR) blends was investigated. Physico-mechanical properties of rubber nanocomposites compatibilized with organomodified montmorillonite revealed strong nanocomposite with high tensile properties, impact strength and good resistance to flex fatigue, abrasion and compression set. Dynamic mechanical thermal analysis (DMTA) revealed a marked increase in storage modulus (E’) and lesser damping characteristics of organically modified clay mineral polymer nanocomposites (CPN) due to intercalation of organophilic montmorillonite by rubber matrix. The morphology of the blends became homogeneous and smoother with the presence of exofoliated/intercalated organically modified montmorillonite. Organomodified layered silicate sheets of montmorillonite greatly enhanced barrier properties by creating tortuous path that retarded the progress of solvent molecules through rubber matrix.
Twórcy
autor
  • Department of Chemistry, Faculty of Science, University of Cairo, Giza, 12613, Egypt
autor
  • Department of Chemical Engineering, Military Technical Faculty, Cairo, 11787, Egypt
autor
  • Department of Chemistry, Science &Technology Center of Excellence, Cairo, 11825, Egypt
Bibliografia
  • 1. Duryodhan M. Elastomer blends. Rubber Chemistry and Technology, 75(3), 2002, 365–427.
  • 2. Singh R. and Sangwan S. Natural rubber/butadiene rubber/ethylene- propylene-diene-monomer blends by various approaches and therefore improves the final mechanical properties. International Journal of Latest Trends in Engineering and Technology, 5(1), 2015, 289–291.
  • 3. Lamlong C., Taweepreda W., Nu-Mard, R. and Songsiriritthigul R. Investigation of sulfur crosslinking interfacial of natural rubber (NR) blending with carboxyalted styrene butadiene rubber (XSBR) using x-ray absorption spectroscopy. Advanced Material Research, 1087(5), 2015, 131–136.
  • 4. Miller-Chou B.A. and Koenig J.L. A review of polymer dissolution. Progress in Polymer Science, 28(8), 2003, 1223–1270.
  • 5. Kroshefsky R.D., Jack L.P. and Duryodhan M. Role of compatibilization in polymer nanocomposites. Rubber Chemistry and Technology, 82(3), 2009, 340–368.
  • 6. Essawy H. and El-Nashar D. The use of montmorillonite as reinforcing and compatibilizing filler for NBR/SBR rubber blend. Polymer Testing, 23(7), 2004, 803–807.
  • 7. Hrachova J., Chodak B. and Komadel P. Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber. Chemical Papers, 63(1), 2009, 55–61.
  • 8. Chiou J.Y., Hsu R.S., Chiu C.W. and Lin S.J. A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. RSC Advances, 3(31), 2013, 12847–12854.
  • 9. Mrah L., Meghabar R. and Belbachir M. The Characteristics of poly propylene oxide/montmorillonite nanocomposites. Journal of Nanomedicine and Nanotechnology, 6(1), 2015, 1–7.
  • 10. Piscitelli F., Posocco P., Toth R., Fermeglia M., Pricl S., Mensitieri G. and Lavorgna M. Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351(1), 2010, 108–115.
  • 11. Lippens B.C. and De Boer J.H. Studies on pore systems in catalysts V. The t method. Journal of Catalysis, 4(3), 1965, 319–323.
  • 12. Quercia G., Lazaro A., Geus J.W. and Brouwers H.J.H. Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement and Concrete Composites, 44(9), 2013, 77–92.
  • 13. Barret E.P., Joyner L.G. and Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of American Chemical Society, 73(1), 1951, 373–80.
  • 14. Fu D. H., Zhan Y. H., Yan N. and Xia H. S. Comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites. Express Polymer Letters, 9(7), 2015, 597–607.
  • 15. Dasan K., Unnikrishnan G. and Purushothaman E. Solvent transport through carbon black filled poly (ethylene-co-vinyl acetate) composites. Express Polymer Letters, 2(5), 2008, 382–390.
  • 16. Saritha A., Joseph K., Boudenne A. and Thomas S. Mechanical, thermophysical, and diffusion properties of TiO2 -filled chlorobutyl rubber composites. Polymer Composites, 32(10), 2011, 1681–1687.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18efdf76-6664-4490-a630-1d2844d81bad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.