PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On continuous convergence of nets of multifunctions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper expands the classical concept of the continuous convergence of nets of multifunctions introduced by Cao, Reilly and Vamanamurthy in [7]. We introduce some new types of properties of convergence of such nets which guarantee the upper or lower semicontinuity of the limit multifunction. Furthermore, we obtain some analogous results concerning generalized continuity properties of multifunctions.
Wydawca
Rocznik
Strony
181--200
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Warsaw University of Life Sciences, Department of Applied Mathematics, ul. Nowoursynowska 159 bud. 34, 02-776 Warsaw, Poland
Bibliografia
  • [1] C. E. Aull, Paracompact subsets, Proccedings of the 2nd Prague Topology Symposium (1966), 45–51.
  • [2] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht, Holland, 1993.
  • [3] G. Beer, More on convergence of continuous functions an topological convergence of sets, Canad. Math. Bull. 28(1) (1985).
  • [4] G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335–343.
  • [5] J. Cao, Quasiuniform convergence for multifunctions, J. Math. Res. Exposition 14 (1994), 327–331.
  • [6] J. Cao, I. L. Reilly, Almost quasiuniform convergence for multifunctions, Comment. Math. 36 (1996), 57–68.
  • [7] J. Cao, I. L. Reilly, M. K. Vamanamurthy, Comparison of convergences for multi-functions, Demonstratio Math. 30 (1997), 172–182.
  • [8] N. Crivat, T. Banzaru, On the quasicontinuity of the limits for nets of multifunctions, Semin. Math. Fiz. Inst. Politechn. Tymisoara (1983), 37–40.
  • [9] P. Fletcher, W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  • [10] S. Francaviglia, A. Lechicki, S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347–370.
  • [11] O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569–582.
  • [12] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
  • [13] E. Klein, A. C. Thompson, Theory of Correspondences, John Wiley Sons, 1984.
  • [14] K. Kuratowski, Topology, Vol. I, New York, 1966.
  • [15] H. P. A. Künzi, Nonsymmetric topology, Bolyai Soc. Math. Stud., Topology, Szeksard, Hungary (Budapest), 4 (1995), 303–338.
  • [16] H. P. A. Künzi, C. Ryser, The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161–183.
  • [17] A. Lechicki, S. Levi, A. Spakowski, Bornological convergence, J. Math. Anal. Appl. 297 (2004), 751–770.
  • [18] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
  • [19] N. Levine, W. J. Stager, On the hyperspaces of a quasi-uniform space, Proc. Amer. Math. Soc. 15 (1971), 101–106.
  • [20] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), 213–218.
  • [21] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
  • [22] E. Michael, Topologies on spaces of sets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
  • [23] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, α-open sets and α-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
  • [24] S. Mrówka, On the convergence of net of sets, Fund. Math. 45 (1958), 237–246.
  • [25] M. G. Murdeshwar, S. A. Naimpally, Quasi-Uniform Topological Spaces, P. Noordhoff Ltd., Groningen, 1966.
  • [26] T. Neubrunn, Strongly quasi-continuous multivalued mappings, General Topology and its Relation to Modern Analisis and Algebra VI (Prague 1986) Heldermann, Berlin, 1988, 351–359.
  • [27] W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316–317.
  • [28] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mappings on compacta, Amer. Math. Soc. Transl. Ser. 2 38(2) (1964), 119–140.
  • [29] V. Popa, Some properties of H-almost continuous multifunctions, Problemy Mat. 10 (1990), 9–26.
  • [30] V. Popa, On a decomposition of quasicontinuity for multifunctions, Stud. Cerc. Mat. 27 (1975), 323–328.
  • [31] V. Popa, T. Noiri, On upper and lower α-continuous multifunctions, Real Anal. Exchange 22 (1996/97), 362–367.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18e1c3c3-bcbb-418b-93c2-5b656f95d81a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.