PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odporność na wysoką temperaturę betonów otrzymanych z dwóch różnych cementów

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
High-temperature resistance of concretes produced of two different cements
Języki publikacji
PL EN
Abstrakty
PL
Konstrukcje betonowe mogą być czasem narażone na ekstremalne warunki, w okresie ich eksploatacji. Ogień, a właściwie działanie wysokich temperatur są typowym przykładem, w których materiały budowlane mogą ulec zniszczeniu. W artykule przedstawiono badania odporności betonów z dwóch różnych cementów poddanych działaniu trzech temperatur: 105°C, 400°C i 1000°C. Oznaczono zmiany następujących właściwości: wytrzymałość, transport wody i pary wodnej, ciepło właściwe oraz przewodność ciepła. Uzyskane wyniki pokazują, że zwykły beton z cementu portlandzkiego nie jest odporny na wysoką temperaturę i jego stosowanie powinno być ograniczone do 400°C. Natomiast beton z cementu glinowego ma lepszą odporność i zachowuje 25% wytrzymałości po poddaniu działania temperatury wynoszącej 1000°C. Zastosowanie włókien bazaltowych, odpornych na wysokie temperatury nie spowodowało poprawy odporności obu betonów.
EN
Concrete structures can sometimes be exposed to the extreme conditions during their lifetime. A fire or, more generally, exposure to high temperatures presents a typical example when a damage to building materials is likely to occur, which can lead eventually to a collapse of the whole structure. In this paper, high-temperature resistance of concretes from different type of cements is analyzed using a characteristic set of measured material parameters. Basic physical properties, mechanical strengths, water- and water vapor transport parameters, and thermal properties are assessed after the exposure to three different temperatures, namely 105°C, 400°C and 1000°C. Experimental results show that ordinary concrete of Portland cement do not resist well to high temperature and their applicability is limited to 400°C. However, concretes from calcium aluminate cement have a better thermal stability and retain about 25% of their strength, even after being exposed to 1000°C. The application of randomly distributed thermally stable basalt fibres is not found to have any substantial effect on the properties of the analyzed concretes.
Czasopismo
Rocznik
Strony
295--309
Opis fizyczny
Bibliogr. 26 poz., il., tab.
Twórcy
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
autor
  • Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
Bibliografia
  • 1. D. N. Crook, M. J. Murray, Regain of strength after firing of concrete. Mag. Conc. Res., 22, 149-154 (1970).
  • 2. A. Petzold, M. Röhrs, Concrete for High Temperatures. London: Maclaren and Sons Ltd., 1970.
  • 3. P. K. Metha, P. J. M. Monreiro, Concrete: Structure, Properties, and Materials. Englewood Cliffs, New Jersey: Prentice Hall College Div., 1986.
  • 4. S. Mindess, J. F. Young, D. Darwin, Concrete. Engelwood Cliffs, New Jersey: Prentice-Hall, Inc., 1981.
  • 5. C. M. George, Industrial Aluminous Cements, Chapter 9, ed. P. Barues, Structure and Preformance of Cements, Applied Science Publishers, London, New York.
  • 6. W. Khaliq, H. A. Khan, High temperature material properties of calcium aluminate cement concrete. Constr. Build. Mat. 94, 475-487 (2015).
  • 7. A. Smith, T. Chotard, N. Gimet-Breart, D. Fargeot, Correlation between hydration mechanism and ultrasonic measurements in an aluminous cement: effect of setting time and temperature on the early hydration. J. of the European Ceramic Society 22, 1947-1958 (2002).
  • 8. N. Ukrainczyk, T. Matusinović, Thermal properties of hydrating calcium aluminate cement pastes. Cem. Concr. Res. 40, 128-136 (2010).
  • 9. V. Antonovič, J. Keriene, R. Boris, M. Aleknevičius, The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure. Procedia Engineering 57, 99-106 (2013).
  • 10. V. Fiore, G. Di Bella, A. Valenza, Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design 32, 2091-2099 (2011).
  • 11. V. Dhand, G. Mittal, K. Y. Rhee, S.-J. Park, D. Hui, A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering 73, 166-180 (2015).
  • 12. C. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials and Design 58, 187-193 (2014).
  • 13. N. Kabay, Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mat. 50, 95-101 (2014).
  • 14. L. Domagała, I. Hager, Influence of high temperature on compressive strength of structural lightweight concrete. Cement Wapno Beton 79, 138-143 (2012).
  • 15. I. Hager, T. Tracz, K. Krzemień, Usefulness of selected destructive and non-destructive methods in the assessment of concrete after fire. Cement Wapno Beton 81, 145-151 (2014).
  • 16. V. K. R. Kodur, L. Phan, Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal 42, 482-488 (2007).
  • 17. D. R. Flynn, Response of High Performance Concrete to Fire Conditions: Review of Thermal Property Data and Measurement Techniques. Milwood, USA: National Institute of Standards and Technology, 1999.
  • 18. ČSN EN 206 - Concrete – Specification, performance, production and conformity. Prague: Czech Standardization Institute, 2014.
  • 19. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. J. of Thermal Envelope and Building Science 27, 307-325 (2004).
  • 20. ČSN EN 1015: Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. Prague: Czech Standardization Institute, 2000.
  • 21. ČSN 72 7031: Determination of water vapour diffusion coefficient of building materials by method without temperature gradient. Prague: Czech Standardization Institute, 2001.
  • 22. E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free water intake as means of material characterization. J. of Building Physics 33, 29-44 (2009).
  • 23. M. K. Kumaran, Moisture diffusivity of building materials from water absorption measurements. J. of Thermal Envelope and Building Science 22, 349-355 (1999).
  • 24. A. Trník, I. Medveď, R. Černý, Measurement of linear thermal expansion coefficient of concrete at high temperatures: A comparison of isothermal and non-isothermal method. Cement Wapno Beton 79, 363-372 (2012).
  • 25. R. Černý, P. Rovnaníková, Transport processes in concrete. London: Spon Press, 2002.
  • 26. T. Korecký, M. Keppert, J. Maděra, R. Černý, Water transport parameters of autoclaved aerated concrete: Experimental assessment of different modeling approaches. J. of Building Physics 39, 170-188 (2015).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18de5a66-7b04-4f8c-910f-d4da33963931
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.