PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation Of Segregation Of Carbon Atoms Due To Sub-Zero Cryogenic Treatment In Cold Work Tool Steel By Mechanical Spectroscopy And Atom Probe Tomography

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Doświadczalne badania segregacji atomów węgla w stali narzędziowej do pracy na zimno po obróbce kriogenicznej metodą spektroskopii mechanicznej i tomografii atomowej
Języki publikacji
EN
Abstrakty
EN
In this work, we present mechanical spectroscopy of cold work tool steel subjected to sub-zero cryogenic soaking treatment to reveal the carbon segregation and the subsequent carbides refinement. The maximum of Snoek-Köster (SK) peak height was obtained in the sample subjected to soaking 1h at −130°C cryogenic treatment. The SK peak height is reduced with prolonging the soaking time. The results indicate that an increase in the height of SK peak is connected with an increase in dislocation density and the number of segregated carbon atoms in the vicinity of dislocations or twin planes after martensite transformation at −130°C which is confirmed by corresponding TEM and atom probe tomography measurement. Hence, it is suggested that the isothermal martensite, formed during the cryogenic soaking treatment decreases (APT) the height of SK peak.
PL
W pracy przedstawiono wyniki spektroskopii mechanicznej stali narzędziowej do pracy na zimno poddanej obróbce kriogenicznej w celu odsłonięcia segregacji węgla i późniejszego tworzenia węglików. Dzięki połączeniu transmisyjnej mikroskopii elektronowej (TEM) i tomografii atomowej (APT) uzyskano maksymalny pik Snoek-Köstera (SK) w próbce poddanej obróbce kriogenicznej przez 1 godzinę w −130°C. Wysokość piku SK obniża się wraz z wydłużeniem czasu obróbki. Wyniki wskazują, że zwiększenie wysokości piku SK jest połączone ze wzrostem gęstości dyslokacji i liczby segregowanych atomów węgla w sąsiedztwie dyslokacji lub płaszczyzn bliźniaczych po przemianie martenzytycznej w -130°C, co potwierdzone jest odpowiednimi pomiarami TEM oraz APT. W związku z tym proponuje się, że izotermiczny martenzyt powstały podczas obróbki kriogenicznej zmniejsza wysokość piku SK.
Twórcy
autor
  • Laboratory for Microstructures, Shanghai University, 99 Shangda Road, Shanghai, China
autor
  • School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, China
autor
  • School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, China
autor
  • School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai, China
Bibliografia
  • [1] P.F. Stratton, Optimising nano-carbide precipitation in tool steels, Mater. Sci. Eng. A 449-451, 809-812 (2007).
  • [2] D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryotreatment on the wear behavior of AISI D2 steel, Wear 266, 297-309 (2009).
  • [3] D. Das, K.K Ray, On the mechanism of wear resistance enhancement of tool steels by deep cryogenic treatment, Phil. Mag. Lett. 92, 295-303 (2012).
  • [4] V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Ye.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Mater. 61, 1705-1715 (2013).
  • [5] J.J. Hoyos, A.A. Ghilarducci, H.R. Salva, C.A. Chaves, J.M. Vélez, Internal friction in martensitic carbon steels, Mater. Sci. Eng. A 521-522, 347-350 (2009).
  • [6] J.J. Hoyos, A.A. Ghilarducci, H.R. Salva, J. Vélez, Evolution of martensitic microstructure of carbon steel tempered at low temperatures, Proc. Mater. Sci. 1, 185-190 (2012).
  • [7] S.H. Li, L.H. Deng, X.C. Wu, Y.A. Min, H.B. Wang, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel, Cryogenics 50, 433-437 (2010).
  • [8] R. Martin, D. Mari, R. Schaller, Influence of the carbon content on dislocation relaxation in martensitic steels, Mater. Sci. Eng. A 521-522, 117-120 (2009).
  • [9] H. Saitoh, N. Yoshinaga, K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron. Acta Mater. 52, 1255-1261 (2004).
  • [10] I. Tkalcec, D. Mari, Internal friction in martensitic, ferritic and bainitic carbon steel cold work effects, Mater. Sci. Eng. A 370, 213-217 (2004).
  • [11] R. Bagramov, D. Mari, W. Benoit, Internal friction in a martensitic high carbon steel, Phil. Mag. 81, 2797-2808 (2001).
  • [12] E.A. Marquis, M. Bachhav, Y.M. Chen, Y. Dong, L.M. Gordon, A. McFarland, On the current role of atom probe tomography in materials characterization and materials science, Current Opinion in Solid State and Materials Science 17, 217-223 (2013).
  • [13] F. Danoix, D. Julien, X. Sauvage, J. Copreaux, Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe, Mater. Sci. Eng. A 250, 8-13 (1998).
  • [14] K. Hono, M. Ohnuma, M. Murayama, Cementite decomposition in heavily drawn pearlite steel wire, Scripta Mater. 977, 44-49 (2001).
  • [15] E.V. Pereloma, I.B. Timokhina, J.J. Jonas, M.K. Miller, Fine-scale microstructural investigations of warm rolled low-carbon steels with and without Cr, P, and B additions, Acta Mater. 54, 4539-4551 (2006).
  • [16] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, 1972.
  • [17] S. Etienne, S. Elkoun, L. David, L.B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89, 31-66 (2003).
  • [18] L.B. Magalas, Mechanical spectroscopy – Fundamentals, Sol. St. Phen. 89, 1-22 (2003).
  • [19] L.B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115, 7-14 (2006).
  • [20] L.B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI – A new algorithm to compute the logarithmic decrement, Key Eng. Materials 319, 231-240 (2006).
  • [21] L.B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137, 15-20 (2008).
  • [22] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522, 384-388 (2009).
  • [23] L.B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metall. Sin. 39, 1145-1152 (2003).
  • [24] L.B. Magalas, Snoek-Köster relaxation. New insights – New paradigms, J. Phys. IV 6, 163-172 (1996).
  • [25] K.L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, New York, 2011.
  • [26] K.L. Ngai, Y.N. Wang, L.B. Magalas, Theoretical basis and general applicability of the coupling model to relaxations in coupled systems, J. Alloy Comp. 211-212, 327-332 (1994).
  • [27] L.B. Magalas, J.F. Dufresne, P. Moser, The Snoek-Köster relaxation in iron, J. de Phys. 42, 127-132 (1981).
  • [28] Y.N. Wang, M. Gu, L. Sun, K.L. Ngai, Mechanism of Snoek-Köster relaxation in body-centered-cubic metals, Phys. Rev. B 50, 3525-3531 (1994).
  • [29] L.B. Magalas, K.L. Ngai, Critical experimental data on the Snoek-Köster relaxation and their explanation by the coupling model, in Mechanics and Mechanisms of Material Damping, ASTM STP 1304, American Society for Testing and Materials, USA, 189-203 (1997).
  • [30] A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumova, A.P. Skoblika, V.A. Sirosha, Yu.N. Petrova, V.G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel, Mater. Sci. Eng. A 527, 7027-7039 (2010).
  • [31] G.T. Eldies, M. Cohen, Strength of initially virgin martensites at −196°C after aging and tempering, Metall. Trans. A 14, 1007-1012 (1983).
Uwagi
EN
This work was supported by the National Natural Science Foundation of China No. 51301100 and No. 51171104
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18dd810c-d19c-42c3-abc7-528544ac5710
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.