PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of the loss of synchronism of a synchronous generator using the wavelet coherence

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza utraty synchronizmu generatora synchronicznego z wykorzystaniem koherencji falkowej
Języki publikacji
EN
Abstrakty
EN
This paper proposes the usage of the wavelet coherence to analyse the phenomenon of the loss of synchronism by a synchronous generator due to a short-circuit in the transmission electrical power network. On the basis of the simulation studies and the use of the wavelet coherence, the relationships between various electrical and mechanical quantities were investigated.
PL
Artykuł proponuje wykorzystanie koherencji falkowej do analizy zjawiska utraty synchronizmu przez generator synchroniczny na skutek wystąpienia zwarcia w sieci przesyłowej. Na podstawie badań symulacyjnych oraz użycia koherencji falkowej zbadano związki pomiędzy różnymi wielkościami elektrycznymi i mechanicznymi.
Rocznik
Strony
186--191
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] Sayarshad H. R. Sabarshad O., Amjady N., Evaluating resiliency of electric power generators against earthquake to maintain synchronism, Electric Power Systems Research, 10 (2022), nr 210
  • [2] Yaghobi H., Transient stability enhancement of power system with instability tolerant synchronous generator, IET Generation, Transmission & Distribution, 14 (2020), No. 21, 4654-4665
  • [3] Vakili R., Khorsand M., Machine-Learning-based Advanced Dynamic Security Assessment: Prediction of Loss of Synchronism in Generators, 52nd North American Power Symposium (NAPS), (2020)
  • [4] Singh N., Chakrabarti S., Sharma A., Real Time Detection and Control of Loss of Synchronism using Energy Function Criterion and Phase Sequence Exchange Technique, IEEE PES Innovative Smart Grids Technologies – Asia (ISGT Asia), (2022)
  • [5] Abd Allah Mahmoud R., Parkash Malik O., Out-of-step detection of synchronous generator using dual computational techniques based on correlation and instantaneous powers, IET Generation, Transmission & Distribution, 16 (2022), No. 21, 2716-2746
  • [6] Robak S., Machowski J., Skwarski M., Enhancement of power system stability by real-time prediction of instability and early activation of steam turbine fast valving, Energy Reports, 8 (2022), 7704-7711
  • [7] Batchu S., Teeparthi A. K., Transient Stability Enhancement Through Individual Machine Equal Area Criterion Framework Using an Optimal Power Flow, IEEE Access, 10 (2022), 49433- 49444
  • [8] Scheifele D., Lens H., Transient Stability of Generator Groups: Factors of Influence and Countermeasures, NEIS Conference 2022, (2022)
  • [9] El-Metwally E. A., Attia M. A., El-Shimy M., A Proposed Wide Area Network Protocol-based Scheme for Swing Detection in Power Systems, 23rd International Middle East Power System Conference (MEPCON), (2022)
  • [10] Gozdowiak A., Kiselewski P., Polowo-obwodowa analiza utraty synchronizmu turbogeneratora podczas anormalnych stanów pracy, Przegląd Elektrotechniczny, 93 (2017), nr 11, 74-78
  • [11] Gryszpanowicz K., Machowski J., Robak S., Sterowanie szeregowego rezystora hamującego poprawiające stabilność systemu elektroenergetycznego przy zdarzeniach ekstremalnych w sieciach przesyłowych, Przegląd Elektrotechniczny, 92 (2016), nr 12, 311-320
  • [12] Sobbouhi A. R., Vahedi A., Online synchronous generator outof- step prediction by electrical power curve fitting, IET Generation, Transmission & Distribution, 14 (2020), No. 7, 1169-1176
  • [13] Abedini M., Davarpanah M., Sanaye-Pasand M., Hashemi M. S., Iravani R., Generator Out-of-Step Prediction Based on Faster-Than-Real-Time Analysis: Concepts and Applications, IEEE Transactions on Power System, 33 (2018), nr 4, 4563- 4573
  • [14] Visic I., Strnad I., Marusic A., Synchronous Generator Out of Step Detection Using Real Time Load Angle Data, Energies, 13 (2020), nr 13
  • [15] Dolatabadi S., Seyedi H., Tohidi S., A new method for loss of excitation protection of synchronous generators in the presence of static synchronous compensator based on the discrete wavelet transform, Electric Power Systems Research, 209 (2022)
  • [16] Akolkar S. M., Jariwala H. R., An Advanced Transmission Line Protection Algorithm to Detect Power Swing and Fault Using Speedy Wavelet, Iranian Journal of Science and Technology, Transaction of Electrical Engineering, 46 (2020), 701-711
  • [17] Xu B., Cao Y., Zhang H., Wang Y., Ruan J. Zhao K., Localization Approach for Forced Oscillation Source Based on Synchrosqueezed Wavelet, IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), (2022)
  • [18] Frimpong A. E., Asumadu J. A., Wavelet Analysis and Neural Network Scheme for Predicting Transient Stability Status, IEEE Power Engineering Society Conference and Exposition in Africa, PowerAfrica, (2020)
  • [19] Rahnama M., Vahedi A., Application of Acoustic Signals for Rectifier Fault Detection in Brushless Synchronous Generator, Archives of Acoustics, 44 (2019), nr 2, 267-276
  • [20] Ehya H., Nysven A., Antonino-Daviu, J. A., Advanced Fault Detection of Synchronous Generators Using Stray Magnetic Field, IEEE Transactions on Industrial Electronics, 69 (2022), nr 11, 11675-11685
  • [21] Slavik J., Eleschova Z., Concept of Smart ACR Setting in Real- Time Operation of Power Systems, Przegląd Elektrotechniczny, 99 (2023), nr 3, 252-259
  • [22] Padiyar K. R., Kulkarni Anil M., Dynamics and Control of Electric Transmission and Microgrids, (2018), Wiley – IEEE
  • [23] Fritzson P., Pop A., Abdelhak K., Asghar A., Bachmann B., Braun W., Bouskela D., Braun R., Buffoni L., Casella F., Castro R., Franke R., Fritzson D., Gebremedhin M., Heuermann A., Lie B., Mengist A., Mikelsons L., Moudgalya K., Ochel L., Palanisamy A., Ruge V., Schamai W., Sjolund M., Thiele B. Tinnerholm J., Ostlund P., The OpenModelica Integrated Environment for Modeling, Simulation and Model-Based Development, Modeling, Identification and Control, 41 (2020), nr 4, 241-285
  • [24] de Castro M., Winkler D., Laera G., Vanfretti L., Dorado-Rojas S. A., Rabuzin T., Mukherjee B., Navarro M., Version [OpenIPSL 2.0.0] – [iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations], SoftwareX, 21 (2023), 101277
  • [25] Torrence Ch., Compo G. P., A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, 79 (1998), nr 1, 61-78
  • [26] Grinsted A., Moore J.C., Jevrejeva S., Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics, 11 (2004), 561-566
  • [27] Mishra Ch., Vanfretti L., Baldwin M., Delaree Jr J., Jones D. K., Analysis of Generator Forced Oscillations During MOD 25 Testing Exploiting Wavelets, Proceedings of the 57th Hawaii International Conference on System Sciences, (2024), 3014- 3022
  • [28] Eleschova Z., Belan A., Cenky M., Bendik J, Cintula B., Janiga P., Online monitoring of the power system stability based on the critical clearing time, Przegląd Elektrotechniczny, 97 (2021), nr 6, 122-127
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18d8bcd8-06a0-4136-8c0f-ab0f8ebb3839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.