PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The energy approach to electrochemical corrosion studies of nano-copper coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents research results on energy impacts and effects of corrosion of electrodeposited nano- and microcrystalline copper surface layers and involve activation energy and mass transfer effects. Design/methodology/approach: The activation energy and mass transfer effects indicate effectiveness of one-period energy approach in the control of the corrosion resistance of copper deposits. Properties of coatings are examined. Findings: Loops of one-period energy dissipated during the corrosion of electrodeposits were determined. Non-sinusoidal periodic excitations of the corrosion cell and integrations of response waveforms were taken into account. The corrosion energy is expressed by the area of the loop on the energy phase plane. The influences of supplying voltage on the topography, morphology and surface roughness of the electrodeposits were examined. Research limitations/implications: The approach is suitable for system operating under non-sinusoidal periodic conditions. The main feature lies in the elimination of the frequency analysis and gives significant simplifications of the corrosion rate measurements realized with a computer processing system or function generator and digital oscilloscope. Practical implications: The important implications consist in complete eliminations of Fourier series analysis and direct exhibitions of susceptibilities of the studied material to corrosion through evaluations of one-period energy loops. The approach involves more physically exact insights on non-sinusoidal influences of environments. Originality/value: The original value consists on introduction of the energy state variables and representing the absorbed energy during the corrosion tests by the area of one-period energy loops. The novelty lies on the identification of various crystalline structures susceptibility on corrosion destructions.
Rocznik
Strony
42--52
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warszawa, Poland
autor
  • Faculty of Management, Warsaw University of Ecology and Management, ul. Wawelska 14, 02-061 Warszawa, Poland
Bibliografia
  • [1] C. Brett, A. Brett, Electrochemistry, OUP, Oxford, 1993.
  • [2] A.J. Bard, L.R. Faulkner, Electrochemical methods, Fundamentals and applications, Wiley Interscience, New York, 2000.
  • [3] E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy, Theory, Experiment, and Applications, Wiley Interscience Publications, New York, 2005.
  • [4] R.G. Kelly, J.R. Scully, D.W. Shoesmith, R.G. Buchheit, Electrochemical techniques in corrosion science and engineering, Marcel Dekker, New York, 2002.
  • [5] C.S. Cha, Introduction to kinetics of electrode processes, Science Press, Bejing, 2002.
  • [6] Ch.M. Welch, A.O. Simm, R.G. Compton, Oxidation of electrodeposited copper on Boron Doped Diamond in acidic solution: Manipulating the size of copper nanoparticles using voltammetry, Electroanalysis 18 (2006) 965-970.
  • [7] D. Tao, G.L. Chen, B.K. Parekh, An electrochemical study of corrosive wear of phosphate grinding mill, .Journal of Applied Electrochemistry 37 (2007) 187-194.
  • [8] S.C. Cheng, M. Gattrell, T. Guena, B. Macdougall, Electrochemical studies of gold ore processing wastewater containing cyanide, copper, an sulfur compounds, Journal of Applied Electrochemistry 36 (2006) 1317-1326.
  • [9] S. Fletcher, Tables of Degenerate Electrical Networks for Use in the Equivalent-Circuit Analysis of Electrochemical Systems, Journal of The Electrochemical Society 141/7 (1994)1823-1826.
  • [10] K. Darowicki, The amplitude analysis of impedance spectra, Electrochimica Acta 40 (1995) 439-445.
  • [11] M. Kowalewska, M. Trzaska, Influence of Si3N4 disperse ceramic phase on the corrosion resistance of micro- and nano-crystalline nickel layers, Proceedings of the VIII International Conference and Exhibition “Corrosion-2006,” Lviv, Ukraine, 2006, 615-619.
  • [12] M. Trzaska, W. Lisowski, Corrosion characteristics of Cu/W composite layers, Corrosion Protection 48 (2005) 112-117.
  • [13] A. Wyszynska, M. Trzaska, Influence of the degree of dispersion of the ceramic phase on the corrosion resistance of Ni-P/Si3N4 composite coatings, Proceedings of the VIII International Conference and Exhibition “Corrosion-2006”, Lviv, Ukraine, 2006, 609-614.
  • [14] N. Birbilis, B.N. Padgett, R.G. Buchheit, Limitations in microelectrochemical capillary testing and transformation of electrochemical transients for acquisition of microcell impedance data, Electrochimica Acta 50 (2005) 3536-3540.
  • [15] J.R. Macdonald, Impedance spectroscopy: old problems and new developments, Proceedings of the 1st International Symposium “Electrochemical Impedance Spectroscopy”, Electrochimica Acta 35 (1990)1483-1492.
  • [16] F. Lapicque, A. Storck, A.A. Wragg, Electrochemical engineering and energy, The Language of Science, Springer, New York, 1995.
  • [17] J.A.L. Dobbelaar, The use of impedance measurements in corrosion research, The corrosion behavior of chromium and iron chromium alloys, Dissertation, Technical University, Delft, 1990.
  • [18] C. Gabrielle, Identification of electrochemical processes by frequency response analysis, Solartron Instrumentation Group, 1980.
  • [19] P. Miecinskas, Copper Dissolution Rate as a Function of the Corroding-Surface Tilt, Russian Journal of Electrochemistry 41/7 (2005) 731-735.
  • [20] A.T Walker, A Wragg, The modelling of concentration-time relationships in recirculating electrochemical reactor systems, Electrochimica Acta 22/10 (1977) 1129-1134.
  • [21] F. Mansfeld, Electrochemical impedance spectroscopy (EIS) as a new tool for investigation methods of corrosion protection, Electrochimica Acta 35 (1990)1533-1537.
  • [22] B.A. Boukamp, A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics 20 (1986) 31-44.
  • [23] M. Trzaska, Electrochemical impedance spectroscopy in corrosion studies of copper surface layers, Proceedings of the VII International Workshop “Computational Problems of Electrical Engineering”, Odessa, 2006, 178-180.
  • [24] K. Shinohara, R. Aogaki, Magnetic field effect on copper corrosion in nitric aacid, Electrochemistry 67 (1999) 126-131.
  • [25] Z. Trzaska, W. Marszalek, Periodic solutions of DAEs with applications to dissipative electric circuits, Proceedings of the IASTED Conference “Modelling, Identification and Control” MIC06, Lanzarote, 2006, 309-314.
  • [26] Z. Trzaska, Straightforward method for studies of periodic non-harmonic states of linear systems, Archives of Electrical Engineering 53 (2004) 191-215.
  • [27] Z. Trzaska, A new approach to shaping one-period energies of dynamical systems operating in non-sinusoidal states, Archives of Electrical Engineering 54/3 (2005) 265-287.
  • [28] Z.W. Trzaska, W. Marszalek, Singular distributed parameter systems, IEEE Control Theory and Applications 140 (1993) 305-308.
  • [29] Z.W. Trzaska, W. Marszalek, Computing periodic solutions of linear differential-algebraic systems with nonsinusoidal excitations, Archives of Electrical Engineering 55/3-4, (2006) 255-271.
  • [30] M. Farkas, Periodic motion, Springer-Verlag, New York, 1994.
  • [31] H.D. Chian, C.C. Chu, G. Cauley, Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective, Proceedings of the IEEE 83/11 (1995) 1497-1529.
  • [32] T. Chun-Lei, X.-P. Wu, A note on periodic solutions of nonautonomous second-order systems, Proceedings of the American Mathematical Society 132 (2004) 1295-1303.
  • [33] H.N. Mhaskar, J. Prestin, On the detection of singularities of a periodic function, Advances in Computational Mathematics 12/2-3 (2000) 95-131.
  • [34] R.G. Bartle, D. Sherbert, Introduction to Real Analysis, J. Wiley, New York, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18d6d289-d590-4c26-a745-40650fcb0b53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.