PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorpcja czerwieni kwasowej 114 i fuksyny zasadowej z roztworów wodnych na mezoporowatych materiałach węglowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Adsorption of Acid Red 114 and Basic Fuchsin from Aqueous Solutions on Mesoporous Carbon Materials
Języki publikacji
PL
Abstrakty
PL
Celem pracy było zbadanie kinetyki adsorpcji oraz wyznaczanie izoterm adsorpcji czerwieni kwasowej 114 i fuksyny zasadowej z roztworów wodnych na zsyntezowanych metodą miękkiego odwzorowania mezoporowatych materiałach węglowych C-KS oraz C-KC. W trzech przypadkach kinetyka adsorpcji przebiegała zgodnie z modelem pseudo II - rzędu: C-KC (czerwień kwasowa 114) oraz C-KS (czerwień kwasowa 114 i fuksyna zasadowa), w jednym zgodnie z modelem pseudo I - rzędu: C-KC (fuksyna zasadowa). Równowaga adsorpcyjna ustaliła się we wszystkich badanych przypadkach po 8 h. Adsorpcja w warunkach równowagowych została opisana za pomocą równań Langmuira i Freundlicha. W trzech przypadkach adsorpcja barwników zachodziła zgodnie z modelem Langmuira, w jednym opisana została przez równanie Freundlicha - C-KC (czerwień kwasowa 114).
EN
In this work the adsorption of basic fuchsin and acidic red on mesoporous carbon materials C-KS and C-KC was examined. Carbon materials were obtained applying softtemplating method in environment of hydrochloric acid and citric acid. For examined adsorbents low-temperature nitrogen adsorption isotherms were determined, used next for porous structure parameters calculations. Obtained isotherms can be categorized as IV type according to IUPAC classification. Studied adsorbents have large surface area SBET: 650 m2/g (C-KS) and 760 m2/g (C-KC); large total pore volume Vt: 0.59 cm3/g (C-KC) and 0.89 cm3/g (C-KS). Mesopores participation in total porosity of examined carbons is 83% for C-KS and 71% for C-KC. This confirms that examined carbons are mesoporous materials with significant advantage of mesoporosity over microporosity. Mesopores dimension, for maximum of distribution function (in the mesopores range) were estimated using Kruk- Jaroniec-Sayari (KJS) method. Mesopores dimension for C-KC carbon is 6 nm and for C-KS carbon is 8.7 nm. Adsorbates concentrations, before and after adsorption, were estimated using spectrophotometric method. Adsorption studies were carried out at 25°C. The adsorption equilibrium for studied mesoporous systems: carbon material - dye solution, was achieved after 8 hours. Studies of the adsorption process kinetics showed that in three cases adsorption kinetics proceeded in compliance with model of apparent II order of reaction: C-KC (acidic red 114) and C-KS (basic fuchsin and acidic red 114). In one case adsorption kinetics proceeded in compliance with model of apparent I order of reaction: C-KC (basic fuchsin). Obtained adsorption isotherms were applied to Langmuir and Freundlich equations. Adsorption process of fuchsin on both examined carbons and adsorption of acidic red on C-KC carbon was carried out in agreement with adsorption model described by Langmuir equation. However, acidic red adsorption on C-KC carbon is better described by Freundlich adsorption model. Adsorption abilities, of examined mesoporous carbon materials, are significantly higher in relation to fuchsin than to acidic red 114; e.g. for C-KS adsorbent, it is 1.289 mg/g (acidic red 114) and 10.661 mg/g (fuchsin). Applying K constant value from Langmuir equation, free enthalpy >G was calculated. Obtained values change in range of –25 to –34 kJ/mol. Negative values of >G show that studied adsorption process is spontaneous.
Rocznik
Strony
227--239
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Uniwersytet Jana Kochanowskiego, Instytut Chemii, ul. Świętokrzyska 15G, 25-406 Kielce
  • Uniwersytet Jana Kochanowskiego, Instytut Chemii, ul. Świętokrzyska 15G, 25-406 Kielce
Bibliografia
  • [1] Choma J., Czubaszek M., Jaroniec M., Adsorpcja barwników z roztworów wodnych na węglach aktywnych, Ochr. Środ. 2015, 37, 3, 3-14.
  • [2] Strek L., Górka J., Jaroniec M., Polymer-templated mesoporous carbons with nickel nanoparticles , Colloids & Surfaces 2010, 362, 20-27.
  • [3] Choma J., Kloske M., Zawiślak A., Jaroniec M., Synteza i właściwości mezoporowatych węgli otrzymanych z żywic fenolowych w obecności polimerów blokowych, Ochr. Środ. 2007, 29, 1, 3-9.
  • [4] Choma J., Żubrowska A., Górka J., Jaroniec M., Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij 58 or Brij 78 polymers, Adsorption 2010, 16, 4, 377-383.
  • [5] Choma J., Jedynak K., Fahrenholz W., Ludwinowicz W., Jaroniec M., Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions, Appl. Surf. Sci. 2014, 289, 592-600.
  • [6] Jedynak K., Wideł D., Surga W., Jóźwiak M.A., Synteza i badanie właściwości adsorpcyjnych mezoporowatych kompozytów węglowo-platynowych, Inż. i Ochr. Środ. 2013, 16, 2, 179-192.
  • [7] Li J., Gu J., Li H., Liang Y., Hao Y., Sun X., Wang L., Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating route, Micropor. Mesopor. Mater. 2010, 128, 144-149.
  • [8] Choma J., Jaroniec M., Zawiślak A., Mezoporowate węgle: synteza i właściwości, Wiad. Chem. 2008, 61, 373-402.
  • [9] Nowak I., Ziółek M., Uporządkowane materiały mezoporowate, Wyd. Uniwersytetu Wrocławskiego, Wrocław 2001.
  • [10] An S.Y., Min S.K., Cha I.H., Choi Y.L., Cho Y.S., Kim C.H., Lee Y.C., Decolorization of triphenylmethane and azo dyes by Citrobacter sp., Biotech. Lett. 2002, 24, 1037-1040.
  • [11] Gupta V.K., Mittal A., Gajbe V., Mittal J., Adsorption of basic fuchsin using waste materialsbottom ash and deoiled soya - as adsorbents, J. Coll. Interf. Sci. 2008, 319, 30-39.
  • [12] Asfour H.M., Fadali O.A., Nassar M.M., El-Feundi M.S., Equilibrium studies on adsorption of basic dyes on hardwood, J. Chem. Technol. Biotechnol. 1985, 35, 21-27.
  • [13] Thinakaran N., Pannerselvam P., Baskaralingam P., Elango D., Sivanesan S., Equilibrium and kinetic studies on the removal of acid red 114 from aqueous solutions using activated carbon prepared from seed shells, J. Hazard. Mater. 2008, 158, 142-150.
  • [14] Arami M., Limaee N.Y., Mahmoodi N.M., Tabrizi N.S., Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull, J. Hazard. Mater. 2006, 135, 171-179.
  • [15] Kyzioł-Komosińska J., Rosik-Dulewska C., Dzieniszewska A., Pająk M., Compost as biosorbent for removal of acid dyes from the wastewater generated by the textile industry, Archiv. Environ. Protect. 2011, 37, 3-14.
  • [16] Sahadevan R., Mahendradas D.K., Shanmugasundaram V., Shanmugam K., Velan M., Sorption kinetics and equilibrium analysis for the removal of Reactive Red 2 and Reactive Blue 81 dyes from synthetic effluents using dried soya bean meal, Inter. J. Chem. React. Eng. 2009, 7.
  • [17] Wong Y., Yu J., Laccase-catalyzed decolorization of synthetic dyes, Water Research 1999, 33, 3512-3520.
  • [18] Malik P.K., Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes Pigments 2003, 56, 239-249.
  • [19] Calvete T., Lima E.C., Cardoso N.F., Dias S.L.P., Pavan F.A., Application of adsorbents prepared from the Brasilian-pine fruit shell for removal of Procion Red MX 3B from aqueous solution - kinetic, equilibrium, and thermodynamic studies, Chem. Eng. J. 2009, 155, 627-636.
  • [20] Rajamohan N., Rajasimman M., Rajeshkannan R., Sivaprakash B., Kinetic modeling and isotherm studies on a batch removal of acid red 114 by an activated plant biomass, J. Sci. Technol. 2013, 8, 778-792.
  • [21] Hameed B.H., Krishni R.R., Sata S.A., Hameed B.H., Krishni R.R., Sata S.A., A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions, J. Hazard. Mater. 2009, 162, 305-311.
  • [22] Oyelude E.O., Owusu U.R., Removal of basic blue - 9 dye from water by Eugenia jambolana seeds and Citrullus lanatus peels, J. Appl. Sci. Environ. Santation 2014, 6, 3827-3832.
  • [23] Hameed B.H., Removal of cationic dye from aqueous solution using jackfruit peel as nonconventional low-cost adsrbent, J. Hazard. Mater. 2009, 162, 344-350.
  • [24] Oyelude E.O., Frimpong F., Dawson D., Studies on the removal of basic fuchsin dye from aqueous solution by HCl treated malted sorghum mash, J. Mater. Environ. Sci. 2015, 6, 4, 1126-1136.
  • [25] Huang L., Kohy J., Wang W., Zhang Ch., Niu S., Gao B., Study on Fe(III) and Mn(II) modified activated carbons derived from Zicania latifolia to removal basic fuchsin, Desalination 2012, 286, 268-276.
  • [26] Zargar B., Parham H., Hatamie A., Modified iron oxide nanoparticles as solid phase extractor for spectrophotometric determination and separation of basic fuchsin, Talanta 2009, 77, 1328-1331.
  • [27] Yang N., Zhu S., Zhang D., Xu S., Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Matter. Lett. 2008, 62, 4-5, 645-647.
  • [28] Chang Y.C., Chen D.H., Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent, Macromol. Biosci. 2005, 5, 254-261.
  • [29] Liao M.H., Wu K.Y., Chen D.H., Fast removal of basic dyes by a novel magnetic nanoadsorbent, Chem. Lett. 2003, 6, 488-492.
  • [30] Choma J., Jedynak K., Marszewski M., Jaroniec M., Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons, Adsorption 2013, 19, 563-569.
  • [31] Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 1938, 60, 309-319.
  • [32] Geegg S.J., Sing K.S.W., Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, New York 1982.
  • [33] Jaroniec M., Kaneko K., Physicochemical foundations for characterization of adsorbents by using high-resolution comparative plots, Langmuir 1997, 13, 6589-6596.
  • [34] Choma J., Jaroniec M., Nowe metody opisu struktury porowatej węgli aktywnych na podstawie danych adsorpcyjnych, Ochr. Środ. 1999, 21, 3, 13-17.
  • [35] Kruk M., Jaroniec M., Gadkaree K.P., Nitrogen adsorption studies of novel synthetic active carbons, J. Col. Inter. Sci. 1997, 192, 250-256.
  • [36] Barrett E.P., Joyner L.G., Halenda P.P., The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc. 1951, 73, 373-380.
  • [37] Kruk M., Jaroniec M., Sayari A., Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements, Langmuir 1997, 13, 6267-6273.
  • [38] Choy K.H.K., McKay G., Porter F.J., Sorption of acid dyes from effluents using activated carbon, Resources, Conservation and Recycling 1999, 27, 57-71.
  • [39] Patil S., Patil J., Pate N., Comparative study of kinetics of removal of fuchsin basic from aqueous solutions using biosorbents, J. Environ. Sci. Toxicol. Food Technol. 2015, 4, 8-20.
  • [40] Kuśmierek K., Świątkowski A., Kamiński W., Adsorpcja 4-chlorofenolu z roztworów wodnych na mieszanych adsorbentach: węgiel aktywny - nanorurki węglowe, Inż. i Ochr. Środ. 2015, 18, 3, 373-383.
  • [41] Sing K.S.W., Everett D.H., Haul R.A.W., Mascou L., Pierotti R.A., Rouquerol J., Siemieniewska T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 1985, 57, 603-619.
  • [42] Ho Y.S., Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 2004, 59, 171-177.
  • [43] Rudziński W., Płaziński W., Adsorption kinetics at solid /solution interfaces. The meaning of the pseudo-first - and pseudo-second-order equations, Wiad. Chem. 2011, 65, 11-12.
  • [44] Ho Y.S., McKay G., Pseudo-second order model for sorption processes, Proc. Biochem. 1999, 34, 451-465.
  • [45] Dudziak M., Werle S., Sorpcja fenolu z roztworów wodnych na konwencjonalnych i niekonwencjonalnych sorbentach, Inż. i Ochr. Środ. 2015, 18, 1, 67-81.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18d62b77-29f0-4653-a4ac-f799acd37e4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.