Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the joint distribution of tax payments according to a loss-carry-forward scheme and capital injections in a Lévy risk model, and provide a transparent expression for the corresponding transform in terms of the scale function. This allows us to identify the net present value of capital injections in such a model, complementing the one for tax found in our paper [3]. We also apply the result to the situation when injections may be stopped at a constant rate, and in this case an explicit formula for the net present value of taxes and injections is given.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
219--227
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
- University of Lausanne and Swiss Finance Institute, Quartier UNIL-Dorigny, Bâtiment Extranef, 1015 Lausanne, Switzerland
autor
- Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
Bibliografia
- [1] H. Albrecher, S. Borst, O. Boxma, and J. Resing, The tax identity in risk theory – a simple proof and an extension, Insurance Math. Econom. 44 (2) (2009), pp. 304-306.
- [2] H. Albrecher and C. Hipp, Lundberg’s risk process with tax, Bl. DGVFM 28 (1) (2007), pp. 13-28.
- [3] H. Albrecher and J. Ivanovs, Power identities for Lévy risk models under taxation and capital injections, Stoch. Syst. 4 (1) (2014), pp. 157-172.
- [4] H. Albrecher and J. Ivanovs, Linking dividends and capital injections – a probabilistic approach, Scand. Actuar. J. (to appear).
- [5] S. Asmussen, Applied Probability and Queues, second edition, Stoch. Model. Appl. Probab., Vol. 51, Springer, New York 2003.
- [6] F. Avram, Z. Palmowski, and M. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process, Ann. Appl. Probab. 17 (1) (2007), pp. 156-180.
- [7] K. Dębicki and M. Mandjes, Queues and Lévy Fluctuation Theory, Universitext, Springer, Cham 2015.
- [8] D. Dickson and H. R. Waters, Some optimal dividends problems, Astin Bull. 34 (1) (2004), pp. 49-74.
- [9] H. U. Gerber and E. S. Shiu, Geometric Brownian motion models for assets and liabilities: From pension funding to optimal dividends, N. Am. Actuar. J. 7 (3) (2003), pp. 37-51.
- [10] J. Hugonnier and E. Morellec, Bank capital, liquid reserves, and insolvency risk, J. Financ. Econ. 125 (2) (2017), pp. 266-285.
- [11] J. Ivanovs, One-Sided Markov Additive Processes and Related Exit Problems, PhD dissertation, University of Amsterdam, Uitgeverij BOXPress, Oisterwijk 2011.
- [12] J. Ivanovs, Potential measures of one-sided Markov additive processes with reflecting and terminating barriers, J. Appl. Probab. 51 (4) (2014), pp. 1154-1170.
- [13] N. Kulenko and H. Schmidli, Optimal dividend strategies in a Cramér-Lundberg model with capital injections, Insurance Math. Econom. 43 (2) (2008), pp. 270-278.
- [14] A. Kuznetsov, A. E. Kyprianou, and V. Rivero, The theory of scale functions for spectrally negative Lévy processes, in: Lévy Matters II, Springer, 2013, pp. 97-186.
- [15] A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Universitext, Springer, Berlin 2006.
Uwagi
Dedicated to Tomasz Rolski on the occasion of his 70th birthday.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18d307e6-fd4d-458b-98b0-e13471b7b3f4