PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical-graphic studies of hydrogen additives’ effects on diesel fuel atomization parameters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers a promising method of enhancing the effectiveness of diesel engines. This method uses the addition of hydrogen in a small amount (up to 2% by mass). The hydrogen additive is added to the high-pressure fuel line before the injector. Based on the experimental findings, a reduction in the engine’s specific fuel consumption of up to 3% was achieved in comparison to the baseline configuration. A research study was conducted at the Admiral Makarov National University of Shipbuilding using a newly established experimental setup to assess the impact of hydrogen additives on primary fuel delivery, spray characteristics, and overall engine performance. Among the experiments conducted, one investigated fuel atomization parameters, focusing on how the presence of hydrogen in the fuel influenced the fuel jet’s characteristics. A high-speed camera with a high resolution was used to record the optical-graphic study to isolate and extract individual shots of the torch’s expansion, thus obtaining images devoid of ignition and flickering. After conducting image processing and constructing jet models, along with subsequent analysis, it becomes apparent that the addition of hydrogen to the primary fuel results in an enhancement of spray quality. The torch volume expanded by approximately 10% to 15%, while the jet length diminished by approximately 8% to 10%. Consequently, the average diameter of the atomized fuel droplets decreases by up to 10%, with the extent of reduction contingent upon the initial parameters and configurations.
Czasopismo
Rocznik
Strony
135--146
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Kherson Educational-Science Institute; Ushakov 44, 73003 Kherson, Ukraine
Bibliografia
  • 1. Yu, S. & et al. Theoretical and experimental comparison of internal flow and spray characteristics between diesel and biodiesel. Fuel. 2017. Vol. 208. P. 20-29.
  • 2. Payri, F. & et al. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel. 2004. Vol. 83(4-5). P. 419-431.
  • 3. Battistoni, M. & Grimaldi, C.N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels. Applied Energy. 2012. Vol. 97. P. 656-666.
  • 4. Som, S. & et al. Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel. 2011. Vol. 90(3). P. 1267-1276.
  • 5. Som, S. & Longman, D.E. & Ramírez, A.I. & Aggarwal, S.K. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel. Fuel. 2010. Vol. 89(12). P. 4014-4024.
  • 6. Faheem, M. & et al. Experimental study on the mean flow characteristics of a supersonic multiple jet configuration. Aerospace Science and Technology. 2021. Vol. 108(106377).
  • 7. Bae, G. & Seoksu, M. Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near- field Using X-ray Phase-Contrast Imaging. Journal of ILASS-Korea. 2020. Vol. 25(2). P. 60-67.
  • 8. Dimitriou, P. & Tsujimura, T. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy. 2017. Vol. 42(38). P. 24470-24486.
  • 9. Magnotti, G.M. & et al. Development of an efficient conjugate heat transfer modeling framework to optimize mixing-limited combustion of ethanol in a diesel engine. Journal of Engineering for Gas Turbines and Power. 2021. Vol. 143(9). No. 091008.
  • 10. Battistoni, M. & Sibendu, S. & Christopher F. Powell. Highly resolved Eulerian simulations of fuel spray transients in single and multi-hole injectors: Nozzle flow and near-exit dynamics. Fuel. 2019. Vol. 251. P. 709-729.
  • 11. Kumar, A. & Kumar, C.B. & Lata, D.B. Effect of addition of fuel additive in diesel with hydrogen on combustion duration. Materials Today: Proceedings. 2023. Vol. 72. P. 652-656.
  • 12. Bika, A.S. & Franklin, L.M. & Kittelson, D.B. Emissions effects of hydrogen as a supplemental fuel with diesel and biodiesel. SAE paper. No. 2008-01-0648, 2008. 2023.
  • 13. Szwaja, S. & Grab-Rogalinski, K. Hydrogen combustion in a compression ignition diesel engine. Int J Hydrogen Energ. 2009. Vol. 34. P. 4413-4421.
  • 14. Saravanan, N. & Nagarajan, G. & Sanjay, G. & Dhanasekaran, C. & Kalaiselvan, K.M. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel. 2008. Vol. 87(17-18). P. 3591-3599.
  • 15. Saravanan, N. & Nagarajan, G. Experimental investigation on performance and emission characteristics of dual fuel DI diesel engine with hydrogen fuel. SAE paper. 2009. No. 2009-26-032.
  • 16. Shalapko, D.O. & Timoshevsky, B.G. & Tkach, M.R. Improving the performance of diesel engines by adding hydrogen. Water Transport. 2016. Vol. 2(25). P. 24-28.
  • 17. Miyamoto, T. & Hasegawa, H. & Mikami, M. & et al. Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine. Int J Hydrogen Energ. 2011. Vol. 36. P. 13138-13149.
  • 18. Ikegami, M. & Miwa, M. & Shioji, M. A study on hydrogen fuelled compression ignition engines. Int J Hydrogen Energ. 1982. Vol. 7. P. 341-353.
  • 19. Gomes-Antunes, J.M. & Mikalsen, R. & Roskilly, A.P. An experimental study of a direct injection compression ignition hydrogen engine. Int J Hydrogen Energ. 2009. Vol. 34. P. 6516-6522.
  • 20. Mohammadi, A. & Shioji, M. & Yasuyuki, N. & et al. Performance and combustion characteristics of a direct injection SI hydrogen engine. Int J Hydrogen Energ. 2007. Vol. 32. P. 296-304.
  • 21. Verhelst, S. & Woolley, R. & Lawes, M. & et al. Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions. Int J Hydrogen Energ. 2005. Vol. 30. P. 209-216.
  • 22. Ghazal, O.H. Performance and combustion characteristic of CI engine fueled with hydrogen enriched diesel. Int J Hydrogen Energ. 2013. Vol. 38. P. 15469-15476.
  • 23. Greenhouse gas emissions. 2021. Available at: https://www.imo.org/en/OurWork/Environment/Pages/GHG-Emissions.aspx.
  • 24. Dimitriou, P. & Tsujimura, T. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy. 2017. Vol. 42(32). P. 24470-24486.
  • 25. Seddiek, S. & Elgohary, M.M. & Ammar, N.R. The hydrogen-fuelled internal combustion engines for marine applications with case study. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike. 2015. Vol. 66. No. 1.
  • 26. Abe, J.O. & Popoola, A.P.I. & Ajenifuja, E. & Popoola, O.M. Review article Hydrogen energy eonomy and storage: Review and recommendation. International journal of hydrogen energy. 2019. Vol. 44. P. 15072-15086.
  • 27. Mazlan, N.A. & Yahya, W.J. & Ithnin, A.M. & Ahmad, M.A. The effect of tap water emulsified fuel on exhaust emission of single cylinder compression ignition engine. MATEC Web of Conferences. 2017. Vol. 90. No. 01054. DOI: 10.1051/matecconf/20179001054.
  • 28. Cope, J. Q., Lewis, W. K., & Weber, H. C. Generalized thermodynamic Properties of Higher Hydrocarbon Vapors1. Industrial & Engineering Chemistry. 1931. Vol. 23(8). P. 887-892.
  • 29. Xu, Qi & Osman, A. Basaran. Computational analysis of drop-on-demand drop formation. Physics of Fluids. 2007. Vol. 19. No. 102111.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18d05bbb-4845-4594-bfe6-ac9f4fc8b974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.