PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Simple and Reliable Method for Predicting the Detonation Velocity of CHNOFCl and Aluminized Explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A reliable method is introduced for predicting the detonation velocity of CHNOFClAl explosives through suitable decomposition paths. The predicted decomposition products are used to estimate the heat of detonation (decomposition) and the detonation velocity. For non-ideal aluminized explosives, the Chapman-Jouguet detonation velocities are significantly different from those expected from existing thermodynamic computer codes for equilibrium and steady state calculations. The predicted detonation velocities give more reliable results for CHNO explosives than one of the best available empirical methods over a wide range of loading densities. The new model provides better agreement with respect to experimental values for aluminized explosives than the computed results from the BKWS equation of state using full and partial equilibrium of aluminium.
Rocznik
Strony
13--33
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
Bibliografia
  • [1] Agrawal J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, WILEY-VCH, Weinheim, 2010.
  • [2] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behaviour of Organic Energetic Compounds: A Review, J. Hazard. Mater. A, 2001, 84, 1-26.
  • [3] Keshavarz M.H., Research Progress on Heats of Formation and Detonation of Energetic Compounds, in: Hazardous Materials: Types, Risks and Control, (Brar S.K., Ed.), Nova Science Publishers Inc., New York, 2011, pp. 339-359.
  • [4] Mader C.L., Numerical Modelling of Explosives and Propellants, 3rd ed., CRC Press, Boca Raton, 2008.
  • [5] Keshavarz M.H., Predicting Detonation Performance in Non-ideal Explosives by Empirical Methods, in: Explosive Materials: Classification, Composition and Properties, (Janssen T.J., Ed.), Nova Science Publishers, New York, 2011, pp. 179-201.
  • [6] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User’s Manual, Lawrence Livermore National Laboratory, Livermore, 1998.
  • [7] Keshavarz M.H., New Method for Predicting Detonation Velocities of Aluminized Explosives, Combust. Flame, 2005, 142, 303-307.
  • [8] Keshavarz M.H., Teimuri Mofrad R., Esmail Poor K., Shokrollahi A., Zali A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Mater. A, 2006, 137, 83-87.
  • [9] Keshavarz M.H., Simple Correlation for Predicting Detonation Velocity of Ideal and Non-ideal Explosives, J. Hazard. Mater., 2009, 166, 762-769.
  • [10] Keshavarz M.H., Prediction of Detonation Performance of CHNO and CHNOAl Explosives through Molecular Structure, J. Hazard. Mater., 2009, 166, 1296-1301.
  • [11] Keshavarz M.H., Shokrolahi A., Pouretedal H.R., A New Method to Predict Maximum Attainable Detonation Pressure of Ideal and Aluminized Energetic Compounds, High Temp-High Press., 2012, 41, 349-365.
  • [12] Keshavarz M.H., Predicting Maximum Attainable Detonation Velocity of CHNOF and Aluminized Explosives, Propellants Explos. Pyrotech., 2012, 37, 489-497.
  • [13] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [14] Hobbs M.L., Baer M.R., Calibrating the BKW-EOS with a Large Product Species Database and Measured C-J Properties, Tenth Symposium (Int.) on Detonation, Boston, 1993.
  • [15] Rice B.M., Hare J., Predicting Heats of Detonation Using Quantum Mechanical Calculations, Thermochim. Acta, 2002, 384, 377-391.
  • [16] Keshavarz M.H., Zohari N., Seyedsadjadi S.A., Relationship between Electric Spark Sensitivity and Activation Energy of the Thermal Decomposition of Nitramines for Safety Measures in Industrial Processes, J. Loss Prev. Process Indust., 2013, 26, 1452-1456.
  • [17] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., A Novel Method for Risk Assessment of Electrostatic Sensitivity of Nitroaromatics through Their Activation Energies of Thermal Decomposition, J. Therm. Anal. Calorim., 2014, 115, 93-100.
  • [18] Keshavarz M.H., Zohari N., Seyedsadjadi S.A., Validation of Improved Simple Method for Prediction of Activation Energy of the Thermal Decomposition of Energetic Compounds, J. Therm. Anal. Calorim., 2013, 114, 497-510.
  • [19] Keshavarz M.H., Moradi S., Ebrahimi Saatluo B., Rahimi H., Madram A., A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds, J. Therm. Anal. Calorim., 2013, 112, 1453-1463.
  • [20] Politzer P., Murray, J.S., Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds, Cent. Eur. J. Energ. Mater., 2011, 8, 209-220.
  • [21] Keshavarz M.H., Pouretedal H.R., Estimation of Detonation Velocity of CHNOFCl Explosives, High Temp-High Press, 2003/2006, 35/36, 593-600.
  • [22] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., WILEY-VCH, Weinheim, 2007.
  • [23] Dobratz B.M., Crawford P.C., LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Stimulants, Lawrence Livermore National Labroratory, California, 1985.
  • [24] Lu J.P., Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO-TR-1199, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18cff74f-c92a-4342-9530-433da4c591a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.