PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neuromorphic approach for breathing rate monitoring using data produced by FMCW radar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper introduces a neuromorphic computational approach for breathing rate monitoring of a single person observed using a Frequency-Modulated Continuous Wave radar. The architecture, aimed at implementation in analog hardware to ensure high energy efficiency and to provide system operation longevity, comprises two main functional modules. The first one is a data preprocessing unit aimed at the extraction of information relevant to the analysis objective, whereas the second one is a pre-trained recurrent neural regressor, which analyzes sequences of incoming samples and estimates the breathing rate. To ensure compatibility with neural processing and to achieve simplicity of underlying resources, several solutions were proposed for the data preprocessing module, which provides range-wise space segmentation, selection of a bin of interest (comprising the dominant motion activity), and delivery of data to regressor inputs. To implement these functions, we introduce an appropriate chirp frequency modulation scheme, apply a neuromorphic filtering procedure and use a Winner-Takes-All network for extracting information from the bin of interest. The architecture has been experimentally verified using a dataset of indoor recordings supplied with reference data from a Zephyr BioHarness device. We show that the proposed architecture is capable of making correct breathing rate estimates while being feasible for analog implementation. The mean squared regression error with respect to the Zephyr-produced reference values is approximately 3.3 breaths per minute (with a deviation of ±0:27 in the 95% confidence interval) and the estimates are produced by a recurrent, GRU-based neural regressor, with a total of only 147 parameters.
Rocznik
Strony
art. no. e143552
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Institute of Applied Computer Science, Lodz University of Technology
  • Institute of Applied Computer Science, Lodz University of Technology
  • Institute of Electronics, Lodz University of Technology
Bibliografia
  • [1] R.R. Varior, M. Haloi, and G. Wang, “Gated Siamese Convolutional Neural Network Architecture for Human Reidentification,” in Computer Vision – ECCV 2016, ser. Lecture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 791–808, doi: 10.1007/978-3-319-46484-8_48.
  • [2] L. Ding, W. Fang, H. Luo, P.E.D. Love, B. Zhong, and X. Ouyang, “A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory,” Autom. Constr., vol. 86, pp. 118–124, Feb. 2018, doi: 10.1016/j.autcon.2017.11.002.
  • [3] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni, “Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness,” Neurosci. Biobehav. Rev., vol. 44, pp. 58–75, Jul. 2014, doi: 10.1016/j.neubiorev.2012.10.003.
  • [4] Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver Inattention Monitoring System for Intelligent Vehicles: A Review,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 596–614, Jun. 2011, doi: 10.1109/TITS.2010.2092770.
  • [5] T.B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human motion capture and analysis,” Comput. Vision Image Understanding, vol. 104, no. 2, pp. 90–126, Nov. 2006, doi: 10.1016/j.cviu.2006.08.002.
  • [6] Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1552–1560, Dec. 2003, doi: 10.1109/TPAMI.2003.1251148.
  • [7] K. Ślot, P. Łuczak, P. Lewandowski, M. Jaśkiewicz, and A. Bielińska-Ślot, “CHISTERA AIR – FMCW radar recordings.” [Online]. Available: https://chist-era-air.iis.p.lodz.pl/
  • [8] C. Li, V.M. Lubecke, O. Boric-Lubecke, and J. Lin, “A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 5, pp. 2046–2060, May 2013, doi: 10.1109/TMTT.2013.2256924.
  • [9] J. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, no. 10, pp. 1530–1530, Oct. 1975, doi: 10.1109/PROC.1975.9992.
  • [10] Ø. Aardal, Y. Paichard, S. Brovoll, T. Berger, T.S. Lande, and S.-E. Hamran, “Physical Working Principles of Medical Radar,” IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1142–1149, Apr. 2013, doi: 10.1109/TBME.2012.2228263.
  • [11] K. Ramasubramanian, “Using a Complex-Baseband Architecture in FMCW Radar Systems,” Texas Instruments, Tech. Rep., 2019. [Online]. Available: http://www.ti.com/lit/wp/spyy007/spyy007.pdf
  • [12] K. Yamamoto, K. Toyoda, and T. Ohtsuki, “Cnn-based respiration rate estimation in indoor environments via mimo fmcw radar,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6, doi: 10.1109/GLOBECOM38437.2019.9013951.
  • [13] S. Ayhan, S. Scherr, A. Bhutani, B. Fischbach, M. Pauli, and T. Zwick, “Impact of Frequency Ramp Nonlinearity, Phase Noise, and SNR on FMCW Radar Accuracy,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 10, pp. 3290–3301, Oct. 2016, doi: 10.1109/TMTT.2016.2599165.
  • [14] G. Sacco, E. Pittella, E. Piuzzi, and S. Pisa, “A radar system for indoor human localization and breath monitoring,” in 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jun. 2018, pp. 1–6, doi: 10.1109/MeMeA.2018.8438759.
  • [15] S. Jardak, M.-S. Alouini, T. Kiuru, M. Metso, and S. Ahmed, “Compact mmWave FMCW radar: Implementation and performance analysis,” IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 2, pp. 36–44, Feb. 2019, doi: 10.1109/maes.2019.180130.
  • [16] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are Unsupervised Multitask Learners,” OpenAI blog, p. 24, 2019.
  • [17] R. Raina, A. Madhavan, and A.Y. Ng, “Large-scale deep unsupervised learning using graphics processors,” in Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML’09. New York, NY, USA: Association for Computing Machinery, Jun. 2009, pp. 873–880, doi: 10.1145/1553374.1553486.
  • [18] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017, doi: 10.1109/JPROC.2017.2761740.
  • [19] Holler, Tam, Castro, and Benson, “An electrically trainable artificial neural network (ETANN) with 10240 ’floating gate’ synapses,” in International 1989 Joint Conference on Neural Networks, vol. 2, 1989, pp. 191–196, doi: 10.1109/IJCNN.1989.118698.
  • [20] R. Sarpeshkar, R.F. Lyon, and C. Mead, “A Low-Power Wide-Dynamic-Range Analog VLSI Cochlea,” in Neuromorphic Systems Engineering: Neural Networks in Silicon, ser. The Springer International Series in Engineering and Computer Science, T.S. Lande, Ed. Boston, MA: Springer US, 1998, pp. 49–103, doi: 10.1007/978-0-585-28001-1_3.
  • [21] S. Draghici, “Neural networks in analog hardware – design and implementation issues,” Int. J. Neural Syst., vol. 10, no. 01, pp. 19–42, Feb. 2000, doi: 10.1142/S0129065700000041.
  • [22] R. Carmona, F. Jiménez-Garrido, R. Domínguez-Castro, S. Espejo, and A. Rodríguez-Vázquez, “CMOS realization of a 2-layer cnn universal machine chip,” Int. J. Neural Syst., vol. 13, no. 06, pp. 435–442, Dec. 2003, doi: 10.1142/S0129065703001716.
  • [23] T.P. Xiao, C.H. Bennett, B. Feinberg, S. Agarwal, and M.J. Marinella, “Analog architectures for neural network acceleration based on non-volatile memory,” Appl. Phys. Rev., vol. 7, no. 3, p. 031301, Sep. 2020, doi: 10.1063/1.5143815.
  • [24] M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, “Training and operation of an integrated neuromorphic network based on metal-oxide memristors,” Nature, vol. 521, no. 7550, pp. 61–64, May 2015, doi: 10.1038/nature14441.
  • [25] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network training using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67, Jun. 2018, doi: 10.1038/s41586-018-0180-5.
  • [26] M. Hu et al., “Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine,” Adv. Mater., vol. 30, no. 9, p. 1705914, 2018, doi: 10.1002/adma.201705914.
  • [27] C. Li et al., “Long short-term memory networks in memristor crossbar arrays,” Nat. Mach. Intell., vol. 1, no. 1, pp. 49–57, Jan. 2019, doi: 10.1038/s42256-018-0001-4.
  • [28] S.-C. Liu, J.P. Strachan, and A. Basu, “Prospects for Analog Circuits in Deep Networks,” arXiv:2106.12444 [cs], Jun. 2021.
  • [29] J. López-Randulfe, T. Duswald, Z. Bing, and A. Knoll, “Spiking Neural Network for Fourier Transform and Object Detection for Automotive Radar,” Front. Neurorob., vol. 15, 2021, doi: 10.3389/fnbot.2021.688344.
  • [30] J. Hailstone and A.E. Kilding, “Reliability and Validity of the Zephyr™ BioHarness™ to Measure Respiratory Responses to Exercise,” Meas. Phys. Educ. Exercise Sci., vol. 15, no. 4, pp. 293–300, Oct. 2011, doi: 10.1080/1091367X.2011.615671.
  • [31] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches,” arXiv:1409.1259 [cs, stat], Oct. 2014.
  • [32] V. Nair and G.E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,” in ICML 2010 – Proceedings, 27th International Conference on Machine Learning, 2010, pp. 807–814.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18ce912d-bf20-408f-af27-d3e269a4c552
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.