PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inter-Device Periocular Recognition Under Near-Infrared Light

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Periocular biometrics is a relatively new field of research, and only several publications on this topic can be found in the literature. It can become a promising feature that can be used independently or as a complement to other biometrics. In this work, the recognition rates of periocular biometrics on a single acquisition device and inter-device database is verified and the impact of different image sources on the performance of recognition algorithms is investigated. For this purpose a NearInfrared Light database was collected. The database contains images taken by two acquisition devices. In order to test the periocular biometric trait, three feature extraction methods are chosen: Histograms of Oriented Gradients, Local Binary Patterns and Scale Invariant Feature Transform. The fusion of these methods is also proposed and it is tested on inter-device database. The feasibility of applying periocular recognition as an individual decision module for a biometric system is assessed. Experimental results yield Equal Error Rate of 17.65 for right eye using inter-device database of 640 gallery periocular images for each eye side taken from 32 different individuals (20 images per individual for each eye side). These results are obtained by the optimal weighted sum fusion of the three feature extraction methods.
Twórcy
  • Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland
autor
  • Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland
autor
  • Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland
autor
  • Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland
autor
  • Department of Microelectornics and Computer Science, Lodz University of Technology, ul. Wolczanska 221/223, 90-924, Poland
Bibliografia
  • [1] Ahmed, N., Natarajan, T., Rao, K. R. (1974). Discrete cosine transform. IEEE transactions on Computers, 100(1), 90-93
  • [2] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359
  • [3] Beer, T. (1981). Walsh transforms. American Journal of Physics, 49(5), 466-472
  • [4] Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167
  • [5] Clausiyz, D.A., Jernigany, M.E. (1996). Towards a novel approach for texture segmentation of sar sea ice imagery.
  • [6] Dalal, N., Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE
  • [7] Daugman, J.G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE transactions on pattern analysis and machine intelligence, 15(11), 1148-1161
  • [8] Hollingsworth, K., Bowyer, K.W., Flynn, P.J. (2010, September). Identifying useful features for recognition in near-infrared periocular images. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on (pp. 1-8). IEEE
  • [9] Hollingsworth, K.P., Darnell, S.S., Miller, P.E., Woodard, D.L., Bowyer, K.W., Flynn, P.J. (2012). Human and machine performance on periocular biometrics under near-infrared light and visible light. IEEE transactions on information forensics and security, 7(2), 588-601
  • [10] Hurley, D.J., Nixon, M.S., Carter, J.N. (2000). A new force field transform for ear and face recognition. In Image Processing, 2000. Proceedings. 2000 International Conference on (Vol. 1, pp. 25-28). IEEE
  • [11] Laws, K. I. (1980, December). Rapid texture identification. In 24th annual technical symposium (pp. 376-381). International Society for Optics and Photonics
  • [12] Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110
  • [13] Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7), 674-693
  • [14] Miller, P.E., Rawls, A.W., Pundlik, S.J., Woodard, D.L. (2010, March). Personal identification using periocular skin texture. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1496-1500). ACM
  • [15] Miller, P.E., Lyle, J.R., Pundlik, S.J., Woodard, D.L. (2010, September). Performance evaluation of local appearance based periocular recognition. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on (pp. 1-6). IEEE
  • [16] Nie, L., Kumar, A., Zhan, S. (2014, August). Periocular recognition using unsupervised convolutional RBM feature learning. In Pattern Recognition (ICPR), 2014 22nd International Conference on (pp. 399-404). IEEE
  • [17] Ojala, T., Pietikäinen, M., Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 29(1), 51-59
  • [18] Ojala, T., Pietikäinen, M., Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24(7), 971-987
  • [19] Padole, C.N., Proenca, H. (2012, March). Periocular recognition: Analysis of performance degradation factors. In Biometrics (ICB), 2012 5th IAPR International Conference on (pp. 439-445). IEEE
  • [20] Park, U., Ross, A., Jain, A.K. (2009, September). Periocular biometrics in the visible spectrum: A feasibility study. In Biometrics: Theory, Applications, and Systems, 2009. BTAS’09. IEEE 3rd International Conference on (pp. 1-6). IEEE.
  • [21] Park, U., Jillela, R.R., Ross, A., Jain, A.K. (2011). Periocular biometrics in the visible spectrum. IEEE Transactions on Information Forensics and Security, 6(1), 96-106
  • [22] Sklansky, J. (1982). Finding the convex hull of a simple polygon. Pattern Recognition Letters, 1(2), 79-83
  • [23] Teo, C.C., Ewe, H.T. (2005). An efficient one-dimensional fractal analysis for iris recognition
  • [24] The OpenCV Reference Manual Release 2.4.9.0, (2014)
  • [25] Wheeler, F.W., Perera, A.A., Abramovich, G., Yu, B., Tu, P.H. (2008, September). Stand-off iris recognition system. In Biometrics: Theory, Applications and Systems, 2008. BTAS 2008. 2nd IEEE International Conference on (pp. 1-7). IEEE
  • [26] Woodard, D.L., Pundlik, S.J., Lyle, J.R., Miller, P.E. (2010, June). Periocular region appearance cues for biometric identification. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on (pp. 162-169). IEEE
  • [27] Woodard, D.L., Pundlik, S., Miller, P., Jillela, R., Ross, A. (2010, August). On the fusion of periocular and iris biometrics in non-ideal imagery. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 201-204). IEEE
  • [28] Xu, J., Cha, M., Heyman, J.L., Venugopalan, S., Abiantun, R., Savvides, M. (2010, September). Robust local binary pattern feature sets for periocular biometric identification. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on (pp. 1-8). IEEE
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18c4d06d-7e1f-4e9d-9865-141408c568ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.