PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a photonic unitary neural network based on MZI arrays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, optical neural networks have attracted widespread attention, due to their advantages of high speed, high parallelism, high bandwidth, and low power consumption. Photonic unitary neural network is a kind of neural networks that utilize the principles of unitary matrices and photonics to perform computations. In this paper, we design a photonic unitary neural network based on Mach–Zehnder interferometer arrays. The results show that the network has a good performance on both triangular and circular binary classification datasets, where most of the data points are correctly classified. The accuracies achieve 97% and 95% for triangular and circular datasets, with the loss function values of 0.023 and 0.046, respectively.
Czasopismo
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • School of Automation, Beijing Information Science and Technology University, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
autor
  • Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
Bibliografia
  • [1] ZHAO W., CHELLAPPA R., PHILLIPS P.J., ROSENFELD A., Face recognition: A literature survey, ACM Computing Surveys 35(4), 2003: 399-458. https://doi.org/10.1145/954339.954342
  • [2] WANG D., CHEN J., Supervised speech separation based on deep learning: An overview, IEEE/ACM Transactions on Audio, Speech, and Language Processing 26(10), 2018: 1702-1726. https://doi.org/10.1109/TASLP.2018.2842159
  • [3] YOUNG T., HAZARIKA D., PORIA S., CAMBRIA E., Recent trends in deep learning based natural language processing, IEEE Computational Intelligence Magazine 13(3), 2018: 55-75. https://doi.org/10.1109/MCI.2018.2840738
  • [4] BISHOP C.M., Neural networks and their applications, Review of Scientific Instruments 65(6), 1994: 1803-1832. https://doi.org/10.1063/1.1144830
  • [5] KRIZHEVSKY A., SUTSKEVER I., HINTON G.E., ImageNet classification with deep convolutional neural networks, Communications of the ACM 60(6), 2017: 84-90. https://doi.org/10.1145/3065386
  • [6] HILL T., MARQUEZ L., O’CONNOR M., REMUS W., Artificial neural network models for forecasting and decision making, International Journal of Forecasting 10(1), 1994: 5-15. https://doi.org/10.1016/0169-2070(94)90045-0
  • [7] KHAN H.N., HOUNSHELL D.A., FUCHS E.R.H., Science and research policy at the end of Moore’s law, Nature Electronics 1(1), 2018: 14-21. https://doi.org/10.1038/s41928-017-0005-9
  • [8] WILLIAMS R.S., What’s Next? [The end of Moore’s law], Computing in Science & Engineering 19(2), 2017: 7-13. https://doi.org/10.1109/MCSE.2017.31
  • [9] IELMINI D., WONG H.-S.P., In-memory computing with resistive switching devices, Nature Electronics 1(6), 2018: 333-343. https://doi.org/10.1038/s41928-018-0092-2
  • [10] SEBASTIAN A., LE GALLO M., KHADDAM-ALJAMEH R., ELEFTHERIOU E., Memory devices and applications for in-memory computing, Nature Nanotechnology 15(7), 2020: 529-544. https://doi.org/10.1038/s41565-020-0655-z
  • [11] HAMERLY R., BERNSTEIN L., SLUDDS A., SOLJAČIĆ M., ENGLUND D., Large-scale optical neural networks based on photoelectric multiplication, Physical Review X 9(2), 2019: 021032. https://doi.org/10.1103/PhysRevX.9.021032
  • [12] SHASTRI B.J., TAIT A.N., FERREIRA DE LIMA T., PERNICE W.H.P., BHASKARAN H., WRIGHT C.D., PRUCNAL P.R., Photonics for artificial intelligence and neuromorphic computing, Nature Photonics 15(2), 2021: 102-114. https://doi.org/10.1038/s41566-020-00754-y
  • [13] WU J., LIN X., GUO Y., LIU J., FANG L., JIAO S., DAI Q., Analog optical computing for artificial intelligence, Engineering 10, 2022: 133-145. https://doi.org/10.1016/j.eng.2021.06.021
  • [14] ASHTIANI F., GEERS A.J., AFLATOUNI F., An on-chip photonic deep neural network for image classification, Nature 606(7914), 2022: 501-506. https://doi.org/10.1038/s41586-022-04714-0
  • [15] FU T., ZANG Y., HUANG Y., DU Z., HUANG H., HU C., CHEN M., YANG S., CHEN H., Photonic machine learning with on-chip diffractive optics, Nature Communications 14(1), 2023: 70. https://doi.org/10.1038/s41467-022-35772-7
  • [16] ZHANG H., GU M., JIANG X.D., THOMPSON J., CAI H., PAESANI S., SANTAGATI R., LAING A., ZHANG Y., YUNG M.H., SHI Y.Z., MUHAMMAD F.K., LO G.Q., LUO X.S., DONG B., KWONG D.L., KWEK L.C., LIU A.Q., An optical neural chip for implementing complex-valued neural network, Nature Communications 12(1), 2021: 457. https://doi.org/10.1038/s41467-020-20719-7
  • [17] SHEN Y., HARRIS N. C., SKIRLO S., PRABHU M., BAEHR-JONES T., HOCHBERG M., SUN X., ZHAO S., LAROCHELLE H., ENGLUND D., SOLJAČIĆ M., Deep learning with coherent nanophotonic circuits, Nature Photonics 11(7), 2017: 441-446. https://doi.org/10.1038/nphoton.2017.93
  • [18] PAI S., BARTLETT B., SOLGAARD O., MILLER D.A.B., Matrix optimization on universal unitary photonic devices, Physical Review Applied 11(6), 2019: 064044. https://doi.org/10.1103/ PhysRevApplied.11.064044
  • [19] DING Y., PU M., LIU L., XU J., PEUCHERET C., ZHANG X., HUANG D., OU H., Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure, Optics Express 19(7), 2011: 6462-6470. https://doi.org/10.1364/OE.19.006462
  • [20] PALMER R., ALLOATTI L., KORN D., SCHINDLER P. C., SCHMOGROW R., HENI W., KOENIG S., BOLTEN J., WAHLBRINK T., WALDOW M., YU H., BOGAERTS W., VERHEYEN P., LEPAGE G., PANTOUVAKI M., VAN CAMPENHOUT J., ABSIL P., DINU R., FREUDE W., KOOS C., LEUTHOLD J., Silicon-organic hybrid MZI modulator generating OOK, BPSK and 8-ASK signals for up to 84 Gbit/s, IEEE Photonics Journal 5(2), 2013: 6600907. https://doi.org/10.1109/JPHOT.2013.2258142
  • [21] MUMTAZ F., DAI Y., ASHRAF M.A., Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fiber of a MZI structure, Journal of Lightwave Technology 38(24), 2020: 6948-6953. https://doi.org/10.1109/JLT.2020.3014857
  • [22] PRIETO F., SEPÚLVEDA B., CALLE A., LLOBERA A., DOMÍNGUEZ C., LECHUGA L.M., Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications, Sensors and Actuators B: Chemical 92(1-2), 2003: 151-158. https://doi.org/10.1016/S0925-4005(03)00257-0
  • [23] KIM J.-Y., KANG J.-M., KIM T.-Y., HAN S.-K., All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment, Journal of Lightwave Technology 24(9), 2006: 3392-3399. https://doi.org/10.1109/JLT.2006.880593
  • [24] MISHINA K., NISSANKA S. M., MARUTA A., MITANI S., ISHIDA K., SHIMIZU K., HATTA T., KITAYAMA K., All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters, Optics Express 15(12), 2007: 7774-7785. https://doi.org/10.1364/OE.15.007774
  • [25] SINGH S., LOVKESH, Ultrahigh speed optical signal processing logic based on an SOA-MZI, IEEE Journal of Selected Topics in Quantum Electronics 18(2), 2012: 970-977. https://doi.org/10.1109/JSTQE.2011.2155623
  • [26] SPENGLER C., HUBER M., HIESMAYR B.C., Composite parameterization and Haar measure for all unitary and special unitary groups, Journal of Mathematical Physics 53(1), 2012: 013501. https://doi.org/10.1063/1.3672064
  • [27] MILLER D.A.B., Perfect optics with imperfect components, Optica 2(8), 2015: 747-750. https://doi.org/10.1364/OPTICA.2.000747
  • [28] WILLIAMSON I.A.D., HUGHES T.W., MINKOV M., BARTLETT B., PAI S., FAN S., Reprogrammable electro-optic nonlinear activation functions for optical neural networks, IEEE Journal of Selected Topics in Quantum Electronics 26(1), 2020: 7700412. https://doi.org/10.1109/JSTQE.2019.2930455
  • [29] KÖKSOY O., YALCINOZ T., Mean square error criteria to multiresponse process optimization by a new genetic algorithm, Applied Mathematics and Computation 175(2), 2006: 1657-1674. https://doi.org/10.1016/j.amc.2005.09.011
  • [30] ZHOU J., WANG H., WEI J., LIU L., HUANG X., GAO S., LIU W., LI J., YU C., LI Z., Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects, Optics Express 27(22), 2019: 32210-32216. https://doi.org/10.1364/OE.27.032210
  • [31] HOROWITZ M., Computing’s energy problem (and what we can do about it), [In] 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 2014: 10-14. https://doi.org/10.1109/ISSCC.2014.6757323
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-18c434df-7917-49f4-9900-d723292e5339
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.